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ABSTRACT

Dynamical System Segmentation:

Data-Driven Symbolic Abstractions for Motion Analysis and Control

Thomas A. Berrueta

Complexity abounds in both natural and engineered dynamical systems—from bipedal

walkers to disorganized swarms of robots. It is the intrinsic complexity of such systems

that makes first-principles reasoning often intractable, necessitating the use of data-driven

techniques. A common feature of complex systems is that they exhibit multi-modality

in their dynamics, displaying distinct behaviors at different points in time and space.

Here, we start from the assumption that the system dynamics can be decomposed and

effectively compressed into a few discrete behaviors, and develop algorithmic tools to this

end. We introduce Dynamical System Segmentation (DSS), an algorithm that generates

low-dimensional symbolic abstractions of the underlying multi-modal dynamics from data.

With DSS we synthesize coarse-grained descriptions of dynamical systems that can be used

towards system identification and control simultaneously. We validate the utility of DSS

in the analysis and control of many simulated and experimental systems of interest, such

as dynamic hoppers, lower-limb exoskeletons, and robotic assistive devices.
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List of Figures

2.1 Schematic of the relationship between a nonlinear

dynamical system and its corresponding Koopman operator

representation. Given a nonlinear system in an n-dimensional state

space as shown in (a), the Koopman operator is a linear representation

of the system in an infinite-dimensional function space, shown in (b).

The function-space coordinates, Ψ, are functions of the original system

state that are referred to as observables. The observables lift the original

system coordinates onto an infinite-dimensional function space. In this

function space, the Koopman operator, K, is a linear map that captures

the underlying system dynamics. 16

2.2 Performance comparison between EDMD Koopman operators,

Gaussian process regression, and kernel ridge regression. Each

model was trained on the same dataset collected from a 4s trajectory of

the free dynamics of a double pendulum system with initial condition

(θ1, θ2, θ̇1, θ̇2) = (0.8, 0, 0, 0). Then, we calculated the integrated mean

squared error (MSE) over a 3s predictive horizon from each data-driven

model over the entire {(θ1, θ2) : [−1, 1] × [−1, 1]} domain. Standard
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implementations of each model were used so as to compare performance

under typical usage. 24

3.1 Example phase-space partitions generated by DSS SVM in a

cart-pendulum system. To illustrate the partitions generated for

a real dynamical system, we apply DSS to sample trajectories from a

cart-pendulum system whose state-space coordinates are (θ, θ̇, xc, ẋc),

see Chapter 4.2 for a more detailed description of the system. DSS

generates a 3-mode abstraction that partitions the phase-space of

the system. Here, we show the (xc, ẋc) = (1,−1) cross-section of the

complete system phase-space. 28

3.2 Schematic of the output of Dynamical System Segmentation

(DSS). DSS is a nonparametric system identification algorithm that

synthesizes low-dimensional representations of dynamical systems.

DSS takes in data from in the form of a multi-dimensional time-series

and segments it into overlapping contiguous subsets. The algorithm

computes local estimates of the underlying system dynamics over

these subsets and represents them as finite-dimensional Koopman

operators. These operators are then compared by a clustering algorithm

(HDBSCAN) to extract a set of models that best represent the distinct

behaviors exhibited by the underlying dynamics. Finally, DSS constructs

a mapping from the space of system behaviors onto the underlying

state-space using a support vector machine (SVM). The output of DSS
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is then a graphical model where each node describes the dynamics of

the system over some domain of the underlying state-space manifold. 29

4.1 Ekso Bionics EksoGTTMlower-limb exoskeleton. The exoskeleton

was primarily used for data collection from two sets of sensors: hip and

knee encoders. We generated a kinematics-based dynamical model using

DSS, and then validated its state-space partitions using foot-mounted

pressure sensors at the heel and toe. 34

4.2 DSS 2-mode symbolic abstraction predicts heel-strike events.

Using a DSS-generated abstraction we are able to correctly predict

heel-strike events with 100% accuracy over a 30s horizon within 11ms

off of the ground truth detection. 36

4.3 DSS 6-mode decomposition of human gait. By varying DSS

parameters we are able to recover a complete clinical model of human

gait from data. Notably this is done in the absence of any sensors

corresponding to the ankle joint or foot pressure information. Here,

we can resolve events such as heel-strikes, toe-offs, and swings for both

legs purely from hip and knee kinematic data. We achieve an event

classification accuracy of 100% within 36ms of each event on average

when tested against ground truth measurements from foot-mounted

pressure sensors over a 30s horizon. 38

4.4 Cart-pendulum system inversion task used in human subjects

study (n=53). In this work, participants use a robotic interface
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(NACT-3D) to interact with a cart-pendulum system where the goal

is to invert the pendulum to its upright position and hold it in that

configuration as long as possible. This is a dynamic task requiring fine

motor control, as well as brusque movement generation. 42

4.5 Sample cart-pendulum inversion task executions. Sample

trajectories from different types of task executions. Here, we note

qualitative differences between unassisted and assisted trajectories from

subject 16, which are then both distinct from an execution generated by

an optimal controller. 44

4.6 Data-driven identification of exemplar behaviors. Through the

use of DSS we recover a graphical model describing the segmentation of

optimal executions of the cart-pendulum inversion task. 46

4.7 Summary of human-subject experiment results. Subjects in

the experimental group who received assistance (blue) were compared

to their own unassisted trials. The control group subjects (red) were

compared from their initial session to their final session. The pair

of plots to the left show the difference in task embodiment between

the sessions of the experimental and control groups. The plots to the

right show the difference between the same groups using the integrated

MSE instead. Both task embodiment and MSE are good predictors

of assistance, validating the DSS-defined performance measure, task

embodiment, as a motion quality assessment tool. 48
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5.1 SLIP dynamic walker and corresponding DSS abstraction.

Here, we generate a DSS representation of the nonlinear SLIP dynamics

as well as its guard equation purely from data. 51

5.2 Using DSS model to generate optimal model predictive control

for SLIP walker. Here, we make use of the DSS model of the nonlinear

hybrid SLIP dynamics to enable nonlinear model predictive control

of the system using an algorithm known as sequential action control

(SAC). We demonstrate the performance of the model by successfully

tracking a forward velocity of 0.4m/s. 53

5.3 Animated trajectory of SLIP hopper. Here, we illustrate the

trajectory of the SLIP hopper. First, we initialize the hopper to bounce

in place with a stabilizing controller using its true dynamics to generate

data to instantiate the DSS model, and then we switch to the control

generated by the MPC using the DSS model to track the forward

trajectory. 54
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CHAPTER 1

Introduction

The deceptively overwhelming complexity of dynamical processes in nature often hides

an underlying simplicity. While there certainly exist chaotic systems whose lack of internal

structure challenges analysis, very diverse dynamics can also arise from the interplay and

composition of a relatively small set of primitive behaviors. Consider human walking gaits

as an example. Walking results from the collective efforts of billions of neurons firing,

resulting in the coupled activations and interactions of hundreds of muscles. However,

the fact that these muscles must interact coherently constrains the near-infinite behaviors

that the degrees of freedom of our bodies can achieve down to just a few (at least in

prototypical healthy human gait). These few behaviors are then cyclically composed in

order to generate walking gaits. Although the mechanisms underlying the rise of low-

dimensional multi-modality across systems are likely varied, it is present across many

natural and engineered systems.

Arriving at such a coarse-graining of the behavior of a complex system can be challeng-

ing due to the intrinsic nonlinearity, nonsmoothness, and nondeterminism that is often

present in the dynamics. It is the intrinsic microscopic complexity of the system prevents

detailed mathematical analysis. However, the shortcomings of first-principles approaches

present an opportunity for the development of data-driven techniques to aid in filling the

gap.
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The problem of constructing effective coarse-grainings of dynamical systems from ob-

servations of the dynamics bears close resemblance to the problem of compression in

information theory. In the information-theoretic sense, a dynamical system is simply a

process that generates sequences of symbols over time. In this setting, compression is

simply a question of how to efficiently represent symbolic sequences with fewer symbols.

The particulars of the chosen compressed representation are determined by a choice of

encoding procedure [40]. Taking inspiration from information theory, we are interested

in developing an equivalent algorithmic coarse-graining procedure for dynamical systems.

Particularly, the goal of this work is to develop such an algorithmic method to ef-

fectively coarse-grain and compress the dynamics of a multi-modal dynamical system.

To serve this purpose, the primary contribution of this work is an algorithm, Dynamical

System Segmentation (DSS): an unsupervised, nonparametric system identification tech-

nique specializing in the synthesis of low-dimensional symbolic abstractions of dynamical

systems. In addition to introducing DSS, we motivate the many possible uses of such

a compression procedure for dynamical systems, and demonstrate its application across

diverse domains, from quantitative motion analysis and hybrid systems control.

The structure of this manuscript is as follows: in Chapter 2, we introduce the Koopman

operator both as an operator-theoretic description of dynamical systems, and as a data-

driven tool for system identification. Then in Chapter 3, we introduce and describe DSS.

In Chapter 4, we motivate DSS as a tool for both qualitative and quantitative motion

analysis. In Chapter 5, we demonstrate that the models generated by DSS are effective

in predicting the trajectories of nonlinear dynamical systems and towards synthesizing
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model predictive control. Finally, in Chapter 6 we highlight some limitations of the

current approach and point towards future work directions.
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CHAPTER 2

Koopman Operators

To achieve our goal of compressing complex multi-modal system dynamics into few-

state abstractions, we require a data-driven representation of a dynamical system that is

amenable to the analysis we are proposing. While many different representation choices

may be applicable, we focus on the Koopman operator for its particular suitability to

robotics and control [4].

Koopman operator theory dates back to the work of Bernard Koopman and John von

Neumann, and their search for connections between quantum mechanics and statistical

mechanics rooted in operator theory [25, 33]. Of the many important results derived

throughout this process, the Koopman operator formalism remained overlooked until

recent years. The Koopman operator is an operator-theoretic formulation of dynamical

systems that describes nonlinear dynamical systems in a linear representation without

the need for approximation [25]. While this may seem too good to be true, there is

an inherent trade-off that takes place as a result of this choice of representation: the

linearized dynamical system now evolves through an infinite-dimensional function space.

It is then as a result of this intractability that the Koopman operator received little

attention for decades. However, recent computational developments in the numerical

estimation of operators has enabled approximation of the Koopman operator in a variety

of frameworks [49, 31, 44, 8].
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In this chapter, we introduce and develop the basics of Koopman operator theory, as

well as the necessary algorithmic tools we need for applying Koopman operators to the

numerical identification of complex dynamics.

2.1. Theory

We begin by defining the domain of dynamical systems of interest to our analysis,

which we restrict to measure-preserving discrete-time dynamical systems that can be

described by

(2.1) ~xk+1 = F (~xk) = ~xk +

∫ tk+∆t

tk

f(~x(τ))dτ,

where the map F : X → X describes the evolution of states ~xk over time-indices k ∈ {Z+∪

0} in a finite-dimensional metric space X (e.g., a manifold or some region of Euclidean

space). We note on the right-hand side of the equation that continuous-time dynamical

systems are captured by this formalism through the evolution of the corresponding flow,

f , over some interval ∆t [4].

While one can focus on describing the orbits, trajectories, and attractors of the states

of such a dynamical system, one can alternatively consider the behavior of an observable of

the system. We can think of observables as real-valued functions of the state ψ : X → R,

which are drawn from some function space ψ ∈ F that is often endowed with some

properties that facilitate mathematical analysis [29]. For the purposes of this work, we

consider F to be a subset of an infinite-dimensional Hilbert space of Lebesgue square-

integrable functions that is closed under composition.
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Figure 2.1. Schematic of the relationship between a nonlinear dy-
namical system and its corresponding Koopman operator repre-
sentation. Given a nonlinear system in an n-dimensional state space as
shown in (a), the Koopman operator is a linear representation of the system
in an infinite-dimensional function space, shown in (b). The function-space
coordinates, Ψ, are functions of the original system state that are referred
to as observables. The observables lift the original system coordinates onto
an infinite-dimensional function space. In this function space, the Koopman
operator, K, is a linear map that captures the underlying system dynamics.

The evolution of all observables of our system dynamics is then given by the Koopman

operator. The Koopman operator K : F → F associated with the system F : X → X

can be described by its action on system observables:

(2.2) Kψ = ψ ◦ F, ∀ψ ∈ F .

It is important to note that the Koopman operator formally provides a global picture of the

nonlinear dynamics of a system in a linear representation [29]. Indeed, we can easily verify

its linearity: K(c1ψ1 + c2ψ2) = c1Kψ1 + c2Kψ2,∀c1, c2 ∈ R, ∀ψ1, ψ2 ∈ F . Additionally, we

can equivalently describe the evolution of vector-valued observables Ψ : X → Rm through

this equation. In Figure 2.1, we provide a sketch of the relationship between a Koopman
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operator representation of a dynamical system and its typical representation. Now that

we have introduced the Koopman operator, as well as some of its theoretical properties,

we can illustrate numerical approximation schemes for computing a Koopman operator

in finite-dimensions.

2.2. Numerics

In this chapter we introduce Extended Dynamic Mode Decomposition (EDMD) [49] as

an algorithm for synthesizing finite-dimensional approximations of the Koopman operator.

Then, from this approximation as a starting point, we describe extensions of the Koopman

formalism for applications in hybrid systems (i.e., a particular type of multi-modality in

dynamical systems), as well as control.

2.2.1. EDMD Approximation

We begin by framing Koopman operator synthesis as a learning problem. It is im-

portant to note that the Koopman operator itself is not a machine learning tool; it is

an alternative operator-theoretic representation of dynamical systems. However, numeri-

cally synthesizing an approximation of this representation in finite dimensions from data

is indeed a machine learning problem. In order to implement Koopman operators in com-

putational applications, we generate finite-dimensional approximations of it in the form

of a matrix operator. While certain systems can be represented by an exact, closed-form,

finite-dimensional Koopman operator, this is generally not the case [22]. Dynamic Mode

Decomposition (DMD) [38] and Extended Dynamic Mode Decomposition (EDMD) [49]
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are some of many methods developed for approximating Koopman operators in finite

dimensions and are commonly applied in fluid dynamics as analytical tools [31].

EDMD synthesizes a data-driven Koopman operator by constructing a linear map that

tries to span a finite-dimensional subspace of a given function space specified by a finite

set of basis functions. Given basis functions Ψ(~x) = [ψ1(~x), ..., ψN(~x)]T , s.t. {ψi(~x) :

X → R, ∀i} and a dataset of sequential observations ~X = [~x1, ..., ~xM ], we can generate

an approximate Koopman operator, K, to describe the evolution of the dynamical system

lifted into observable space

(2.3) Ψ(~xk+1) = KΨ(~xk) + ε,

such that ε ∼ N (~0,Σ), where N is a multivariate Gaussian distribution with mean ~0, and

variance tensor Σ. The corresponding approximate Koopman operator is given by the

solution to the optimization

(2.4) K∗ = argmin
K

1

2

M−1∑
k=1

||Ψ(~xk+1)−KΨ(~xk)||2.

The unconstrained problem has a closed-form solution; however, recent work has focused

on gradient-descent-based solutions to this problem under spectral constraints for the

operator [28]. The solution to the unconstrained problem is given by

(2.5) K∗ = AG†,
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where † denotes the Moore-Penrose pseudoinverse and the individual matrix components

are

G = G[M ] =
1

M

M−1∑
k=1

Ψ(~xk)Ψ(~xk)T

A = A[M ] =
1

M

M−1∑
k=1

Ψ(~xk+1)Ψ(~xk)T .(2.6)

An additional property of interest that we note based on Eq. 2.6, is that we can generate

these matrices incrementally in real-time as we measure our states online [2, 21]. The

incremental updates to these matrices can be computed via

G[M + 1] = G[M ] +
1

M + 1
(Ψ(~xM)Ψ(~xM)T −G[M ])

A[M + 1] = A[M ] +
1

M + 1
(Ψ(~xM+1)Ψ(~xM)T − A[M ]),(2.7)

where we can calculate the updated Koopman operator with

(2.8) K[M + 1] = A[M + 1](G[M + 1])†.

This formulation does not scale in complexity with the number of measurements since

the pseudoinverse computation complexity scales with respect to the number of basis

functions considered. The difference equation in Eq. 2.7 describes an implicit cumulative

average of all measurements. However, it is possible to perform incremental updates to

the Koopman operator using other kinds of difference equations, such as moving average

filters, exponential moving average filters, or Kalman filters [19, 16].
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2.2.2. Koopman Operator for Control

In order to apply the Koopman operator in control systems, we must formulate the

operator to account for real-time inputs [7]. By considering control inputs as a part

of the state vector, we can partition the basis function vector Ψ(~x, ~u) into Ψ(~x, ~u) =

[Ψx(~x)T ,Ψu(~x, ~u)T ]T , where {Ψx(~x) : X → RNx} and {Ψu(~x, ~u) : X × U → RNu} such

that N = Nx + Nu. Here, U represents the space of control inputs, u. As a result, the

corresponding data-driven Koopman operator can be split into submatrices

(2.9) K =

Kx Ku

Kux Kuu

 .
Using these submatrices we can formulate the time-evolution of state observables while

accounting for the influence of control [2]

(2.10) Ψx(~xk+1) = KxΨx(~xk) +KuΨu(~xk, ~uk).

Additionally, when considering the evolution of observables that depend on input, the

following equation also holds

(2.11) Ψu(~xk+1, ~uk+1) = KuxΨx(~xk) +KuuΨu(~xk, ~uk).

It is worth noting a couple special cases of Eq. 2.10. For the case in which Ψu(~x, ~u) is

linear in ~u the equation becomes

(2.12) Ψx(~xk+1) = KxΨx(~xk) + K̂u~uk,
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where K̂u = Ku
∂Ψu(~xk,~uk)

∂~u
. Then for the case in which Ψu(~x, ~u) is linear in ~u and does not

depend on the state the equation is

(2.13) Ψx(~xk+1) = KxΨx(~xk) +Ku~uk.

This formulation in Eq. 2.13 of the Koopman operator for control systems enables us

to easily incorporate it into classical control schemes such as optimal control, or other

model-predictive frameworks [26]. Alternative data-driven formulations of the Koopman

operator for control have been described in the work of [22].

As an illustrative example, we consider the case of linear-quadratic (LQ) optimal

control. In optimal control, we seek to specify control laws that best drive systems towards

a desired goal state with respect to an objective. For a discrete-time LQ control problem

with goal state ~xd, we can define an objective function of the following form over the

iterate k

(2.14) J =
∞∑
k=0

(Ψx(~xk)−Ψx(~xd))
TQ(Ψx(~xk)−Ψx(~xd)) + ~uTkR~uk,

where Q and R are positive semi-definite square matrices of appropriate dimensions that

specify weights on system states and control effort, respectively. Deriving an optimal

solution to this LQ problem leads to a linear feedback law

(2.15) ~uLQK
= −FLQK

(Ψx(~x)−Ψx(~xd))

such that the optimal feedback gain ~FLQK
is

(2.16) FLQK
= (R +KT

u PKu)−1KT
u PKx,



22

where P is the solution to the discrete-time algebraic Ricatti equation. Through this

process, we can solve optimal control problems with data-driven Koopman models [7, 22].

2.2.3. Koopman Operator for Hybrid Dynamical Systems

Recent work presented in [1, 4] introduced an extension of the numerical Koopman

framework to hybrid dynamical systems. Hybrid dynamical systems experience discon-

tinuities in their dynamics where depending on the system state the system can exhibit

different dynamics. Hybrid systems are an example of complex multi-modal systems

where the differential equations describing the behavior of the system explicitly include

discretized behaviors over the state-space. While the complex systems we consider in this

work also exhibit multi-modality, hybrid systems represent a small subset of the set of

such systems.

Hybrid dynamics are most commonly experienced in robotic systems as the result

of impacts and intermittent contacts in legged locomotive systems. These contacts lead

to discontinuities and non-smoothness in the state-space trajectories of the system, and

hence must be modeled piece-wise to account for such jumps in the dynamics. An indicator

function determines which hybrid mode will evolve system at its current state. We can

formulate these dynamics as

(2.17) F (~x) =



F1(~x), if Φ(~x) = 1

...
...

Fi(~x), if Φ(~x) = i

...
...

FB(~x), otherwise
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where each Fi(~x) represents the dynamics of states ~x ∈ X at hybrid mode Φ(~x) = i.

Additionally, at each hybrid mode boundary there is a discontinuous map between modes.

Assuming that Φ(~x) is known a priori, it is possible to compute a Koopman operator Ki

to represent each hybrid mode. We can specify a hybrid Koopman operator using

(2.18) K,Ψ(~x) =



K1,Ψ1(~x), if Φ(~x) = 1

...
...

Ki,Ψi(~x), if Φ(~x) = i

...
...

KB,ΨB(~x), otherwise

where we characterize the discontinuous jumps between hybrid modes by collecting data

at the mode boundaries and using Ψ∗i (~x
+
k ) = Ψ∗i (~x

−
k )K∗i . Given that these jumps in state

often take place over very small time scales, it may be difficult to gather enough data to

provide a robust Koopman operator for that mapping. Active excitation methods might

be necessary in order to properly characterize transitions. Alternative treatments of the

Koopman operator have looked into modeling and analyzing switched [35], hybrid [18],

and distributed systems [20].

2.2.4. Comparison to Alternative Methods

To illustrate the predictive capacity of the EDMD approximation of the Koopman

operator, we make use of it to predict the unforced nonlinear dynamics of a double pen-

dulum from a variety of initial conditions. Moreover, we compare the Koopman operator
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Figure 2.2. Performance comparison between EDMD Koopman
operators, Gaussian process regression, and kernel ridge regres-
sion. Each model was trained on the same dataset collected from a 4s
trajectory of the free dynamics of a double pendulum system with initial
condition (θ1, θ2, θ̇1, θ̇2) = (0.8, 0, 0, 0). Then, we calculated the integrated
mean squared error (MSE) over a 3s predictive horizon from each data-
driven model over the entire {(θ1, θ2) : [−1, 1]× [−1, 1]} domain. Standard
implementations of each model were used so as to compare performance
under typical usage.

to alternative machine learning techniques, namely Gaussian processes and kernel ridge

regression.

To compare between these methods, we make use of standard, easily available im-

plementations rather than state-of-the-art. To this end, we generate three independent

data-driven models of the dynamics of a double pendulum system—one with Koopman

operators, one with Gaussian processes, and one with kernel ridge regression. We collected

a training dataset consisting of a single 4s trajectory taken from the double pendulum free

dynamics sampled at 100Hz with an initial condition of (θ1, θ2, θ̇1, θ̇2) = (0.8, 0, 0, 0). We

use the training dataset to instantiate a Koopman operator, kernel ridge regression model,

and a Gaussian process model. The Koopman operator model is calculated using a set of
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second-order polynomial basis functions of the double pendulum system states, while both

the kernel ridge regression model and the Gaussian process use the radial basis function

kernel (which is the default choice in many common software packages). The regulariza-

tion and variance parameters for the Gaussian process and kernel ridge regression models

were selected by the Scikit-Learn software package [34] via Bayesian hyperparameter op-

timization [39]. Each model is then used to predict double pendulum trajectories for a

time horizon of 3s from each (θ1, θ2) initial condition over the {(θ1, θ2) : [−1, 1]× [−1, 1]}

domain, with zero initial velocity. Then, we calculate the integrated mean squared error

(MSE) between each model’s prediction and the true dynamics over the entire predictive

horizon for all initial conditions.

Figure 2.2 depicts the results of the comparison. The Koopman operator model predic-

tion has the lowest average MSE of the three models. We observe that both the Gaussian

process model and kernel ridge regression model prediction errors are lowest at the initial

conditions of the training trajectory (θ1, θ2) = (0.8, 0) as a result of regularization, while

the Koopman operator model generalizes more easily over the domain.

Throughout this chapter we have motivated the Koopman operator and its numerical

approximation as a convenient tool for prediction of dynamical systems. The example

above and comparison alternative models also depicts the Koopman operator an effective

linear representation of the underlying nonlinear dynamics. Equipped with Koopman

operators as a tool, we may now use them towards developing techniques tailored for

analyzing complex multi-modal dynamical systems.
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CHAPTER 3

Dynamical System Segmentation

Now that we have described Koopman operators as an effective tool for understanding

and predicting dynamical systems, we return to our problem of analyzing complex multi-

modal dynamical systems. While finite-dimensional Koopman operators can be useful in

describing nonlinear dynamics, they often have limited predictive capacity outside of the

state-space domain of observed trajectories. In this sense, this is a limitation of finite-

dimensional approximations of the Koopman operator relative to the theoretical globally

predictive Koopman operator. While in systems with simple dynamics the locality of the

operator may not pose substantial hurdles, in complex systems this can lead to substantial

predictive errors.

An example problem domain where substantial predictive errors with a single Koop-

man operator would arise is in the prediction of hybrid dynamical systems. Here, the

most natural Koopman representation of the system would be comprised of multiple in-

dividual operators, as was described in Chapter 2.2.3. However, in that chapter we made

the assumption that we knew the number of system modes a priori, and that we also

knew the function describing the transitions between such modes. In general, such fine

information about the system is often impossible to acquire from first-principles outside

of toy example problems. Thus, we are interested in developing data-driven tools for

representing multi-modal systems from observations of their behavior.
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To this end, we developed and applied Dynamical System Segmentation (DSS) in [5,

37, 23]. DSS is a nonparametric, unsupervised learning algorithm that discovers and

segments system behaviors from observations of state-space trajectories. The algorithm

synthesizes a set of distinct, yet interrelated, system behaviors that capture the multi-

modal dynamics of the system without any a priori knowledge of the system. We refer to

the set of models synthesized by DSS as an alphabet comprised of symbols—each a Koop-

man operator—describing the coarse-grained dynamics of the system. DSS is comprised

of three primary subroutines: (i) computation of sequential Koopman operators, (ii) un-

supervised density-based clustering over the space of operators, (iii) and self-supervised

learning of a projection onto the system state-space.

Given a dataset ~X = [~x1, ..., ~xM ] consisting of state trajectories from a dynamical sys-

tem (assumed to be of the same form as in Eq. 2.1), and a set of vector-valued observables

{Ψ(~x) : X → RN , we can evaluate the basis functions onto the dataset X in order to

generate a transformed dataset ΨX = [Ψ(~x1), ...,Ψ(~xM)]T . We then split the transformed

dataset ΨX into a set of W (potentially overlapping) rectangular windows, and calculate

a Koopman operator for each, thereby generating a set of symbols K = {K1, ..., KW}.

We are interested in creating a minimal alphabet of Koopman operators with which

to span all observed system behaviors. Unsupervised learning methods such as clustering

algorithms that specialize in the identification of classes within datasets are well-suited for

this task. By considering each RN×N Koopman operator as a point in RN2
space, we can

construct a feature array and partition the set K into subsets using a clustering algorithm.

In particular, we use Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN), which is a nonparametric clustering algorithm that performs well in
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Figure 3.1. Example phase-space partitions generated by DSS
SVM in a cart-pendulum system. To illustrate the partitions gener-
ated for a real dynamical system, we apply DSS to sample trajectories from
a cart-pendulum system whose state-space coordinates are (θ, θ̇, xc, ẋc), see
Chapter 4.2 for a more detailed description of the system. DSS generates
a 3-mode abstraction that partitions the phase-space of the system. Here,
we show the (xc, ẋc) = (1,−1) cross-section of the complete system phase-
space.

high-dimensional settings subject to noise [9]. The algorithm groups the operators into

B classes {C1, ..., CB} using only the threshold of points required to form a cluster as a

parameter. We compose a set K = {K1, ..., KB} of class exemplars by taking a weighted-

average of all Ki ∈ Cj, ∀j ∈ {1, ..., B}, according to the class-membership probability

p(Ki|Ki ∈ Cj). The class-membership probability function is provided by the HDBSCAN

software package [30].

Although we have created a minimal alphabet K of system behaviors, it is of interest

to project these behaviors onto the state-space manifold from this abstract operator space.

We label all points in the transformed dataset ΨX with a label l ∈ {0, ..., B} according

to the class label of the Koopman operator each point corresponds to. Then, we train a



29

Figure 3.2. Schematic of the output of Dynamical System Segmen-
tation (DSS). DSS is a nonparametric system identification algorithm that
synthesizes low-dimensional representations of dynamical systems. DSS
takes in data from in the form of a multi-dimensional time-series and seg-
ments it into overlapping contiguous subsets. The algorithm computes local
estimates of the underlying system dynamics over these subsets and repre-
sents them as finite-dimensional Koopman operators. These operators are
then compared by a clustering algorithm (HDBSCAN) to extract a set of
models that best represent the distinct behaviors exhibited by the underly-
ing dynamics. Finally, DSS constructs a mapping from the space of system
behaviors onto the underlying state-space using a support vector machine
(SVM). The output of DSS is then a graphical model where each node de-
scribes the dynamics of the system over some domain of the underlying
state-space manifold.

support vector machine (SVM) classifier, Φ(ψ(~x)) to project the class labels onto the state-

space manifold, thereby generating partitions of the state-space [34]. In this setting, the

SVM implementation is self-supervised because the algorithm itself generates the labels

for training. An example of the SVM partitions onto the state-space of a dynamical

system is shown in Figure 3.1.
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Algorithm 1 Dynamical System Segmentation (DSS)

Input: Sequential dataset ~X = [~x1, ..., ~xM ] consisting of realizations of a dynamical system
defined over some state-space X, and basis functions {Ψ(~x)| Ψ : X → RN}

Procedure:
1: Transform the ~X dataset into ΨX = [Ψ(~x1), ...,Ψ(~xM )]T using selected basis
2: Split ΨX into a set of W (possibly disjoint) subsets, themselves comprised of sequential data
3: Calculate a Koopman operator Ki for each subset of ΨX using least-squares optimization

to construct the set S = {K1, ...,KW }
4: Construct a feature array Sflat by flattening all Ki ∈ RN×N in K into points in RN2

and
appending them together

5: Apply nonparametric clustering on Sflat and label all Ki’s from one of B discerned classes
{C1, ..., CB}

6: Construct a set K = {K1, ...,KB} of class exemplars by taking a weighted-average of all
Ki ∈ Cj , ∀j ∈ {1, ..., B}, according to p(Ki|Ki ∈ Cj)

7: Label all points in ΨX with the label l ∈ {1, ..., B} of the Koopman operator they were used
in training

8: Train an SVM Φ(Ψ(~x)) on the labeled points
9: Construct set of observed transitions E by tracking all sequential labels in the dataset

10: Construct a graph G = (K, E) encoding system behaviors as well as transition probabilities
between each one

Return: Probabilistic graphical model G, and trained SVM Φ(Ψ(~x))

The output of DSS is best represented by a graphical model. We can define a graph

G = (K, E) where the node set K contains the exemplar Koopman operators synthesized

by the clustering procedure. The set of edges E and associated weights are determined by

directly observing the sequences of class labels in the dataset, and tracking the frequencies

of transitions. The transition probabilities estimated from this procedure can either be

interpreted as state-space adjacency in a deterministic system (by taking dwe for each edge

weight w), or as estimates of the true transition probabilities between nodes if the system

is stochastic. Figure 3.2 illustrates how the output graphical model from DSS relates to

the underlying manifold of the dynamical system. Each node in the graph represents a

distinct dynamical system over its respective partition of the state-space manifold. By
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traversing the graph symbolically from one node to another, traversal of the state-space

manifold is implied. The DSS algorithm is summarized in Algorithm 10.

DSS as an algorithm enables detailed analyses of the dynamics of complex nonlinear

dynamical systems from data. The graphical model output by DSS is an informative

object itself in addition to its predictive capabilities. In the following chapters, we illus-

trate the utility of the DSS graphical model as a function of the structure of the graph,

the information encoded in the node and transition frequencies, as well as the predictive

capacity of the Koopman models themselves.
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CHAPTER 4

Data-Driven Symbolic Abstractions for Motion Analysis

Throughout this chapter and the next we proceed to demonstrate and motivate dif-

ferent uses and applications of DSS. In this chapter, we focus on applications of DSS for

constructing models of motion, and then assessing the quality of said motion. First, we

investigate the information directly encoded in the structure of the DSS graphical model,

and apply it in context of gait segmentation. Then, we use the relative frequencies of

DSS-derived symbols observed in the trajectories of agents to assess the quality of move-

ment in the context of a dynamic task. Many of the results in this chapter were presented

in [23] and [5].

4.1. Gait Segmentation

Human gait has been an active clinical and algorithmic subject of study for many

years. While the clinical literature is largely settled in relation to healthy human gait,

understanding the role impairments play in gait is less so. Because different impairments

may lead to unique modifications to human gait, it has been challenging to develop models

of impaired gait in the absence of efficient data-driven techniques to analyze movement.

In this domain, it is particularly important that the algorithms developed to serve this

purpose be unsupervised because there is no medical consensus with which to generate

labels of impaired gaits. We suggest that progress in this domain may prove useful
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towards developing assistive platforms for walking, such as exoskeletons, as well as clinical

intervention strategies.

A particularly active area in this field is the study of gait partitioning and gait phase

identification [42]. Through the use of a variety of algorithms, one can often obtain models

that predict and distinguish in real-time between the clinically-specified phases of healthy

human gait. Many examples of this can be found in the literature as implemented across

different machine learning techniques, such as neural networks [48, 11], hidden Markov

models [43], or Gaussian mixture models [12]. However, these models are generated from

a rich suite of sensory information, such as ground contact forces, joint positions, inertial

data, or muscle signals. Particularly, most of these studies rely heavily on ankle data

for phase identification, which is often not present in lower-limb assistive devices, such

as exoskeletons. The greater the number of sensors in the device, the greater the cost,

leading to a decrease in accessibility for end-users.

Moreover, the fact that these algorithms require labeled training datasets also limits

their applicability in scenarios with abnormal gaits. Work in this area often requires the

practitioner to make assumptions about the number of gait phases expected, phase tran-

sition times, or phase durations, limiting these algorithms’ ability to adequately partition

abnormal gait. All of this amounts to a rebuke of traditional machine learning techniques

in the domain of abnormal gait analysis.

Here, we propose DSS as a tool for developing data-efficient, unsupervised models of

human gait, and demonstrate it by synthesizing models that match clinical descriptions

of healthy gait in an experimental lower-limb exoskeleton. Particularly, we apply DSS to

the gaits generated by a healthy human subject in an Ekso Bionics R© exoskeleton, and



34

Figure 4.1. Ekso Bionics EksoGTTMlower-limb exoskeleton. The
exoskeleton was primarily used for data collection from two sets of sensors:
hip and knee encoders. We generated a kinematics-based dynamical model
using DSS, and then validated its state-space partitions using foot-mounted
pressure sensors at the heel and toe.

demonstrate accurate gait segmentation using data only from knee and hip joints. We

validate our gait partitions by comparing it to pressure data from heel and toe contact

sensors, and reliably predict heel-strike and toe-off events without use of impact sensors in

the model. We do not pre-label transitions in our training data or pre-define the expected

number of gait phases, which allows us to identify a range of recurring movement patterns

in the gait cycle in an unsupervised manner, showing promise for meaningful partitioning

of abnormal walking gaits.

We collected gait data using EksoGTTM—a robotic lower-limb exoskeleton from Ekso

Bionics, Richmond, CA, USA, visible in Figure 4.1. When not actively in assistance mode,

the device offers freedom to move in the sagittal plane, and to a limited extent in the
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frontal plane. When active, it provides assistance solely in the sagittal plane. Both knee

and hip joints can be used for assistance, where angular position and angular velocity can

be measured at 500Hz by encoders in all four joints. The ankle joints are passive and no

sensory data is available.

For the purposes of this study, two minutes of data were collected of straight-line

flat-ground walking from one healthy subject with previous experience walking in the

exoskeleton (an Ekso Bionics employee). No assistance or resistance was provided to the

wearer through motor activity; any perceptible resistance was passive from the mechanical

structure of the device. A total of sixteen variables were recorded. Twelve of them

(right/left knee angles, right/left knee angular velocities, right/left hip angles, right/left

hip angular velocities, right/left knee motor currents, and right/left hip motor currents)

were used for analysis. The additional four variables (right/left toe sensors and right/left

heel sensors) were excluded from the DSS analysis, and used solely for validation and

verification of DSS-generated gait partitions.

Gait cycles are generally defined from one foot strike to the subsequent foot strike

on the same side. Clinically, they are often partitioned separately for each leg based

on functionally critical events for that leg [10]. For this study, we are interested in

generating gait partitions that capture critical changes in the behavior of both legs. We

did not impose leg symmetry as a constraint, but we chose states and basis functions

symmetrically for right and left legs to allow the algorithm to remain equally sensitive to

recurring patterns on both sides. Moreover, in the instantiated models we look for gait

events representing contact with the ground, specifically heel-strike and toe-off, because

these impact events indicate transitions between dynamically distinct modes that are
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(a) Thresholded pressure signals provide a
ground truth for heel-strike and toe-off events
in gait.

(b) The learned DSS model, exclusively gener-
ated from hip and knee trajectory information,
correctly determines heel-strike events.

Figure 4.2. DSS 2-mode symbolic abstraction predicts heel-strike
events. Using a DSS-generated abstraction we are able to correctly predict
heel-strike events with 100% accuracy over a 30s horizon within 11ms off
of the ground truth detection.

important for generating control in a robotic assistive device. As a tertiary objective, we

are interested in sub-dividing leg swings, because the majority of active assistance during

walking takes place during the swing phase.

In order to validate DSS-generated gait partitions, we utilize the foot-mounted pressure

sensors at the heel and toe. We collect analog signals from the pressure sensors and

threshold them to obtain binary readings of whether the heel and toe are in contact with

the ground. These processed sensor readings allow us to directly record heel-strikes and

toe-offs, establishing a notion of ground truth for transitions between stance and swing

phases, as demonstrated in Figure 4.2(a). As a result, for each gait decomposition, we

can find mode transitions that correspond to these ground-contact events, and measure

the offset between the prediction of the event and the ground truth from the pressure

sensors. The offset measurement is dependent on DSS reliably recognizing specific mode
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transitions, and thus conveys both the precision and accuracy of event detection. We

report the offset, or latency, as our validation statistic for each of the obtained gait

decompositions.

Using DSS, we can segment gait into a range of decompositions purely from kinematic

information, where each decomposition is determined by a set of distinct transition con-

ditions that are recurrent throughout the gait cycle. Here, we report on two distinct gait

partitions obtained from the same dataset synthesized by DSS with different sets of basis

functions. For each gait partition, we expand the state space through quadratic, cubic,

and/or trigonometric functions of the original 12 states. Depending on the choice of basis

functions, and consequently the recognized transition events, we segment gaits into 2 and

6 phases, where in each case the phase transitions correspond to easily interpretable gait

events.

We begin with the simpler and more easily verifiable gait segmentation: a 2-phase

segmentation. In the 2-phase segmentation, we solely identify transitions that correspond

to heel-strikes with each leg. This way, the gait cycle gets simply split into right and

left steps, as shown in Figure 4.2(b). We verify the accuracy of the DSS heel-strike event

detection against pressure sensor signal, and observe no misclassifications with an average

latency of 11ms± 8.5ms. We note that this latency falls well within the range of human

reaction times, so a robotic device with access to such a segmentation at this time scale

could provide assistance based on it.

Finally, we report a 6-phase gait partition, which we visualize it in Figure 4.3. This

gait partition allows us to identify both heel-strikes and toe-offs, splitting the gait into

right/left swing and stance. In addition, it divides swing into two phases: initial and
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Figure 4.3. DSS 6-mode decomposition of human gait. By varying
DSS parameters we are able to recover a complete clinical model of human
gait from data. Notably this is done in the absence of any sensors cor-
responding to the ankle joint or foot pressure information. Here, we can
resolve events such as heel-strikes, toe-offs, and swings for both legs purely
from hip and knee kinematic data. We achieve an event classification ac-
curacy of 100% within 36ms of each event on average when tested against
ground truth measurements from foot-mounted pressure sensors over a 30s
horizon.

terminal swing. Transition from initial into terminal swing corresponds to the clinically

recognized foot clearance event—when the swing leg passes the stance leg—and near

maximal knee flexion. This segmentation could also be of great use for the development

of assistance platforms, as well as clinical interventions, because it allows one to detect

the start of swing. For example, in the setting of using robotic rehabilitation to aid a

subject in independently initiating steps, we might want them to complete pre-swing prior

to receiving robotic assistance and then wait for a toe-off event to apply control. As with

the previous segmentation, we verify the toe-offs and heel-strikes against pressure sensors,

detecting no misclassifications and an average offset of 36ms ± 9.6ms—also well within

the range of recorded human reaction times.
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The gait partitions presented here are certainly not exhaustive, and are only meant

to illustrate the capabilities of the algorithm. Alternative gait segmentations can be

obtained, depending on what gait phase transitions are important to detect in a particular

application. Thus, by applying DSS onto walking data we have demonstrated how the

graphical model generated by DSS can encode a clinically-correct representation of healthy

human gait in a completely unsupervised manner (as shown in Figure 4.3).

4.2. Motion Quality Assessment

In the previous section of the chapter, we demonstrated that the graphical models

generated by DSS can encode information about the state trajectories they are derived

from. While it is difficult to arrive at closed-form hybrid dynamical descriptions capturing

the complexities of human gait, we still had a notion of ground truth from clinical models

of gait to compare against our DSS graph. In general we do not expect this to be the

case, so we are interested in applying and validating DSS in complex systems that do not

possess the sharp mode-boundary delineations that hybrid dynamical systems have.

In this section, we apply DSS to the analysis of a joint human-machine system without

obvious mode boundaries, and use it towards assessing the quality of movements in the

context of a task. To this end, we take an information-theoretic viewpoint of human

movement where we presuppose that motions are information-carrying signals comprised

of symbols drawn from an alphabet of motion primitives. While such an assumption may

seem unwarranted, certain theories of neural motor control support it.

In [32], the authors propose that human motions are the result of the composition

of a finite set of premotor signals emanating from the spinal cord. As a consequence,
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the neurological feasibility of motion decomposition supports the existence of movement

primitives, also referred to as movemes [46]. In this setting, movemes are fundamental

units of motion, and derive their name from their linguistic analogue: phonemes. Thus,

all smooth human motions may be comprised of symbolic sequences drawn from an al-

phabet of movemes. Movemes motivate the application of information-theoretic tools in

human motion analysis, because they provide evidence of finite structure in otherwise

continuous motion signals. Moreover, the neurological existence of movemes indicates

that under some choice of representation human motion can be discretized without loss

of information.

In the human motion analysis literature, movemes are often mathematically described

using linear causal dynamical systems [46, 47], or autoregressive models [17]. Most motor

signal segmentation methods demand prior specification of the moveme alphabet either

through direct template matching or manual labeling of training data, which limits their

use in exploratory analyses where the structure of the alphabet may not be known a

priori. Techniques in symbolic dynamic filtering can generate symbolic alphabets given

an expected alphabet size by creating partitions of the state-space using methods such

as maximum entropy partitioning [27]. Additionally, state-space partition techniques

can be applied to nonlinear transformations of the space via methods such as wavelet

transforms [36]. However, the symbols synthesized by these techniques correspond to

quasi-static abstractions, and hence do not capture the dynamic nature of movemes.

In this setting, we propose DSS as an algorithmic method for generating moveme

alphabets from data without any prior system knowledge. We posit that the relation-

ships between symbols in the alphabet specify a language of motion, where symbols and
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their relationships are given by the nodes and edges (with respective weights) in a DSS

graph. Just as in spoken languages, symbols (i.e., letters) have a natural frequency dis-

tribution that gives us information about the kinds of words that are typically formed in

that language. Here, we suggest that the symbols extracted by DSS and their relative

frequencies—though coarse-grained—encode substantial information about the underly-

ing movements. Particularly, we will analyze the amount of information that movements

encode in the context of an underlying task.

To quantify the task-specific information content of movements, we must first define

a relevant information metric. In the context of information theory, information is an

ordered sequence of symbols drawn from an alphabet generated by a source [40]. We

define our notion of task information with respect to a given source, such that the source

generates sequences of symbols comprising realizations of the task. Any physical system

or agent attempting a given task is what we term a task-specific information source.

Throughout this study, we quantify task information from the relative symbol frequencies

distribution from a task-specific information source. Thus, we define task embodiment as a

measure of task information encoded in an agent’s trajectories by calculating the relative

entropy of their relative symbol frequency distribution, with respect to a reference symbol

distribution that “optimally” embodies the task.

Given trajectory demonstrations from an agent that optimally embody a task, we can

construct a DSS model of said agent and generate a corresponding graph, Gopt. We refer

to the relative frequency distribution over the symbols, K, that we observe in the optimal

agent as p. However, we note that we can use the trained SVM classifier Φopt(ψ(~x)) to

identify the behaviors of the optimal agent in other “non-optimal” agents. Moreover,
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Figure 4.4. Cart-pendulum system inversion task used in human
subjects study (n=53). In this work, participants use a robotic interface
(NACT-3D) to interact with a cart-pendulum system where the goal is to
invert the pendulum to its upright position and hold it in that configuration
as long as possible. This is a dynamic task requiring fine motor control, as
well as brusque movement generation.

by tracking the relative frequencies of such symbols in the non-optimal agent, we can

empirically calculate a discrete distribution q. In this context, we now mathematically

define task embodiment as the Kullback-Leibler divergence (DKL) [6] between the symbol

distribution of the optimal and non-optimal agents:

(4.1) DKL(p||q) = −
B∑
i=1

p(Ki)log
(q(Ki)

p(Ki)

)
.

To test the efficacy with which DSS can coarse-grain and compress the movement

patterns of complex dynamical systems, we applied the DSS-enabled task-embodiment

formalism to assess the motions of multiple agents attempting a challenging dynamic task.

Specifically, the proposed assessment of task embodiment was applied to data collected

from human subjects performing a cart-pendulum inversion task1.

1The authors utilized de-identified data from a study approved by the Northwestern Institutional Review
Board.
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The dynamics of the cart-pendulum (pictured in Figure 4.4) are given by the following

nonlinear equations of motion

(4.2) ~̇x = f(~x, u) =



θ̇

g
l

sin(θ) + u cos(θ)− b
ml2

θ̇

ẋc

u


where the system state is given by ~x = [θ, θ̇, xc, ẋc]

T , and the scalar control input u

represents accelerations along the axis of movement of the cart. Constants g, l, m, and b

represent gravitational acceleration, pendulum length, mass, and viscous damping factor,

respectively. The participants interacted with the cart-pendulum dynamics through an

admittance-controlled haptic robot (NACT-3D, similar to the system described in [41]

and [14]) that served as an interface for the users to provide input accelerations to the cart.

Through the NACT-3D as an interface, we were able to record the system trajectories as

a function of user input at sampling frequency of 60Hz.

In this experimental protocol, all subjects (n = 53) were instructed to attempt to

invert the virtual cart-pendulum with the goal of spending as much time as possible in

the upright unstable equilibrium during the course of a thirty second trial. Subjects

repeated this task for 30 trials in each of two sessions. Forty subjects completed this task

while receiving filter-based robotic assistance in one session and without assistance in the

following session. The order in which the subjects received assistance was counterbalanced

to account for learning effects. An additional thirteen subjects were placed in a control

group which completed both sessions without assistance.
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Figure 4.5. Sample cart-pendulum inversion task executions. Sam-
ple trajectories from different types of task executions. Here, we note qual-
itative differences between unassisted and assisted trajectories from subject
16, which are then both distinct from an execution generated by an optimal
controller.

The filter-based assistance algorithm that was used was first proposed in [45] for a

system with pure noise inputs, and was later adapted for user input in [15]. The assistance

physically filters the user’s inputs—accelerations in this case—such that their actions are

always in the direction of an optimal control policy calculated in real time. Figure 4.5

depicts the effect of assistance on the state trajectories of a representative subject, and

includes a trajectory generated by the optimal controller for comparison. In the assisted

trajectory, the subject reaches the goal state of θ = 0 (i.e., the unstable equilibrium of

the pendulum), and is able to balance the pendulum starting around t = 5s. At this

point, the assistance restricts the user’s input motion xc(t) such that the inverted state is

maintained until t = 13s. However, the same subject is unable to maintain the inverted

configuration without assistance.
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In [24], the filter-based assistance algorithm was applied to the virtual cart-pendulum

inversion task on the NACT-3D that is described here. In that context, the authors were

qualifying the effects of the algorithm on user performance and long-term learning. In

this work, the authors found in a variety of metrics that the assistance algorithm signif-

icantly improved user performance and learning. Taking the fact that robotic assistance

unilaterally resulted in performance improvements for participants, for the purposes of

the analysis in this chapter we limit our scope to analyzing differences in the movements

of unassisted vs. assisted trajectories with our task embodiment metric in Eq. 4.1.

To generate a reference alphabet of optimal behaviors for the task, we synthesize a

dataset representative of an optimal user by using an optimal controller. Data from the

expert is segmented by applying DSS in order to generate a graphical model Gopt, and a

set of exemplar behaviors to track. The set of basis functions utilized to achieve this were

(4.3) Ψ(~x) = [θ, θ̇, xc, ẋc, u, u cos(θ), u cos(θ̇), |usat|cos2
( uπ

|usat|
)
, ẋ2

c , 1],

where |usat| is the optimal controller’s saturation limit on the control effort. The basis

functions were selected from the set of linear combinations of second order polynomial and

sinusoidal functions. Since clustering occurs in RN2
space, where N is the number of basis

functions, we chose a low-dimensional set (N = 10) of representative basis functions in

Eq. 4.3 from the larger set of linear combinations of polynomial and sinusoidal functions.

This dimensionality reduction can be achieved via multiple methods, such as principal

component analysis [6].

In Figure 4.6, we depict the segmentation generated from the exemplar trials. We qual-

itatively describe the identified modes 0, 1 and 2 as energy pumping and swing-up, energy
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(a) Time-domain segmentation of a selected op-
timal control solution of the pendulum inversion
task. Mode 0 corresponds to energy pumping
and swing-up, mode 1 corresponds to energy re-
moval and slow-down, and mode 2 corresponds
to stabilization.

(b) Graphical model resulting from the segmen-
tation of a dataset of 30 optimal control solu-
tions to the cart-pendulum inversion task. The
set of segmented behaviors are shown projected
onto the system’s phase portrait over the domain
{(θ, θ̇) : (−π, π)× (−2π, 2π)}.

Figure 4.6. Data-driven identification of exemplar behaviors.
Through the use of DSS we recover a graphical model describing the seg-
mentation of optimal executions of the cart-pendulum inversion task.

removal and slow-down, and stabilization, respectively. Intuitively, these modes represent

a coarse set of strategies that an expert user should exhibit in succeeding at the task. The

distribution of behaviors found in the optimal user was p = [0.2437, 0.1275, 0.6288].

The human subjects data was analyzed by using the trained SVM Φopt(Ψ(~x)) to detect

the optimal behaviors in the movements of each subject throughout all of their trials with

and without the presence of assistance. By tracking the relative frequencies of behaviors

K we can generate a distribution q with which to compare to Gopt’s state distribution p.

We can compare the distributions using task embodiment quantified by DKL(p||q), where

a lower DKL indicates greater embodiment of the task. This same procedure is applied

to the two sessions the control group subjects.
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We analyzed the human subjects dataset, and found that task embodiment is a reliable

predictor of physical assistance and thus task performance. All subjects better embodied

the task in their assisted trials, whereas there was no observed difference in the control

group. In addition to comparing the groups using task embodiment, we also evaluated

a standard metric for assessing task performance, the integrated MSE. Specifically, we

calculated the integrated MSE with respect to the goal state of (θ, θ̇) = (0, 0). Integrated

MSE is a reasonable performance metric for this task since success is defined as the ability

to reach a single system configuration. However, we find that it predicts assistance at a

lower significance level, and lower effect size than task embodiment.

A paired two-sample t-test on the task embodiment of each subject with and without

assistance showed that the subjects’ sessions with assistance (µ = 0.0756, σ = 0.0436)

significantly outperformed the sessions without assistance (µ = 0.2084, σ = 0.0560), with

p = 2.8633e-16, t(39) = 13.4876, and an effect size of d = 2.1326. In contrast, there was

no significant difference between the first session (µ = 0.2039, σ = 0.0406) and the second

session (µ = 0.1943, σ = 0.0400) of the control group when a paired two-sample t-test was

performed p = 0.5546, t(12) = −0.6051. These results indicate that task embodiment

reliably captures assistance and lack thereof.

We also performed a paired two-sample t-test on the MSE of each subject with

and without assistance, and found that the session with assistance (µ = 124.66, σ =

119.96) significantly outperformed the session without assistance (µ = 428.88, σ =

307.46), but with a lower significance and effect size than task embodiment, with p =

1.2353e-7, t(39) = 6.4526 and an effect size of d = 1.0202. Again, we applied the paired

two-sample t-test to the control group and found that the first session (µ = 352.83, σ =
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Figure 4.7. Summary of human-subject experiment results. Sub-
jects in the experimental group who received assistance (blue) were com-
pared to their own unassisted trials. The control group subjects (red) were
compared from their initial session to their final session. The pair of plots
to the left show the difference in task embodiment between the sessions of
the experimental and control groups. The plots to the right show the dif-
ference between the same groups using the integrated MSE instead. Both
task embodiment and MSE are good predictors of assistance, validating the
DSS-defined performance measure, task embodiment, as a motion quality
assessment tool.

217.67) did not significantly outperform the second (µ = 546.31, σ = 446.10), had

p = 0.0651, t(12) = 2.0320. These results indicate that MSE can also predict the presence

of assistance, but not as reliably as task embodiment. The task embodiment measure has

both a significance level several orders of magnitude greater than that of integrated MSE,

and showed an effect size that was twice as large as integrated MSE. This demonstrates

that task embodiment captures the broad difference between the assisted and unassisted

trials. These results are summarized in Figure 4.7, where we see that the change in task

embodiment (∆TE) from assisted to unassisted trials is always positive.

By applying DSS onto the movements of a joint human-cart-pendulum system we were

able to synthesize a coarse-grained representation of the dynamical system. Moreover, we
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were able to compress the essence of what it means to succeed at the pendulum inversion

task down to the 3 discrete elements of the node distribution, as demonstrated by the

analysis above. Throughout this chapter, we have illustrated the effectiveness of DSS as

a tool for motion analysis that is inspired by the formalisms of hybrid dynamical systems

and information theory. In addition to analyzing the information encoded in the graphical

model of DSS, in the following chapter we will demonstrate that the Koopman operator

models themselves (graphically represented by the nodes of a DSS model) have sufficient

predictive capacity intrinsically to be of use in model predictive control.
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CHAPTER 5

Data-Driven Symbolic Abstractions for Control

Hybrid systems can be difficult to model and control because of inherent discontinuities

in the system dynamics. These discontinuities often cannot be represented by a single

global model and must instead be represented piecewise. When these dynamics and

their corresponding mode transition function are known ahead of time, nonlinear model

predictive control (MPC) can be readily applied. However, for many systems of interest,

such as lower-limb exoskeletons, the necessary information is not readily available. Hence,

data-driven techniques like DSS are needed to predict the behavior of these multi-model

systems and their transition events. Here, we illustrate the predictive capabilities of DSS

and its application in the model predictive control of unknown hybrid dynamical systems.

To demonstrate the effectiveness of DSS model predictions, we consider an a simple yet

highly nonlinear dynamic walking model: the spring-loaded inverted pendulum (SLIP).

Without any a priori information about the dynamics, transition function, or number of

hybrid modes, we use a DSS model to characterize the dynamics and then provide model

predictive control to the system.

The SLIP system dynamics are split into two hybrid modes: stance and flight. The

transition between these hybrid modes is described by an indicator function, often referred

to as a guard equation, which specifies the set of dynamics evolving the system at a

given coordinate in state-space. The system states are ~x = [x, z, ẋ, ż, xf ]T , where (x, z)

indicates the position of the mass in the configuration specified in Figure 5.1(a), and xf
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(a) Configuration of spring-loaded inverted pen-
dulum (SLIP) model.

(b) Identified behaviors of SLIP dynamic hop-
per: stance or flight.

Figure 5.1. SLIP dynamic walker and corresponding DSS abstrac-
tion. Here, we generate a DSS representation of the nonlinear SLIP dy-
namics as well as its guard equation purely from data.

is the position of the SLIP model’s foot. The model’s control inputs are ~u = [us, uf ]T .

The dynamics of the SLIP model are

(5.1) fstance =



ẋ

ż

(k(l0 − l(~x)) + us)
x−xf

ml(~x)

(k(l0 − l(~x)) + us)
z

ml(~x)
− g

0


, fflight =



ẋ

ż

0

−g

ẋ+ uf


,

where l0 is the resting length of the spring, k its stiffness, and l(~x) =
√

(x− xf )2 + z2

is its variable length [24]. Then, the indicator function specifying transitions from one

dynamical mode to another is ΦSLIP (~x) = sign(1− l0
l(~x)

) ∈ {−1, 1}. The complete hybrid
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dynamics are

(5.2) fSLIP (~x, ~u) =

 fstance(~x, ~u), if ΦSLIP (~x) = −1

fflight(~x, ~u), otherwise
.

To instantiate the DSS model, we use the dynamics in Eq. 5.1 and the controller

in [3] to generate a stable trajectory hopping in place for 30s at 60Hz. Despite this

remarkably small amount of data, DSS synthesizes a symbolic model that closely matches

the analytical dynamics, as shown in Figure 5.1(b). The generated model has two dynamic

modes corresponding to flight and stance—just as in the analytical equations. Moreover,

the learned guard equation that determines the discontinuous transition between hybrid

modes accurately captures the behavior of the true function. We tested the accuracy of the

hybrid mode classification in two 30s-long trajectories: a constant velocity trajectory, and

a variable velocity trajectory with direction changes. In the constant velocity scenario,

the learned DSS transition function perfectly predicted the hybrid dynamic mode of the

system with 100% accuracy. Additionally, in the variable velocity scenario DSS retained

its effective mode predictions at an accuracy of 99.5%.

Equipped with the learned model, we now shift to using it towards model predictive

control. To this end, we define an objective function with which to express our desired

system behavior:

(5.3) J(~x(t), ~u(t), ~xd(t)) =
1

2

∫ tf

to

‖~x(t)− ~xd(t)‖2
Q + ‖~u(t)‖2

R dt,

with Q � 0 and R � 0 being cost modifiers for the state error and control effort, re-

spectively, and ~xd(t) the desired trajectory to track. By specifying the initial condition,
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Figure 5.2. Using DSS model to generate optimal model predic-
tive control for SLIP walker. Here, we make use of the DSS model of
the nonlinear hybrid SLIP dynamics to enable nonlinear model predictive
control of the system using an algorithm known as sequential action con-
trol (SAC). We demonstrate the performance of the model by successfully
tracking a forward velocity of 0.4m/s.

desired trajectory, objective function, system dynamics, and their corresponding spatial

derivatives, nonlinear MPCs generate control inputs that minimize the given objective.

Using the DSS-derived model to inform the nonlinear MPC in [3], we run control

the system to follow a desired trajectory of ~xd(t) = [0, 0.4, 1.6, 0, 0], with matrix R as

the 2 × 2 identity matrix, and Q with diagonal Qdiag = [0, 50, 100, 0, 0] and 0 elsewhere.

Based on this reference trajectory, the controller tries to maintain the SLIP center of

mass at a height of 1.6m and a forward velocity of 0.4m/s throughout the duration of the

simulation. For these control experiments, we start the SLIP system at an initial condition

with height z = 2m and zero forward velocity (ẋm = 0m/s). As shown in Figure 5.2, the
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Figure 5.3. Animated trajectory of SLIP hopper. Here, we illustrate
the trajectory of the SLIP hopper. First, we initialize the hopper to bounce
in place with a stabilizing controller using its true dynamics to generate data
to instantiate the DSS model, and then we switch to the control generated
by the MPC using the DSS model to track the forward trajectory.

controller is able to keep the SLIP upright and moving forward at a velocity of 0.37m/s,

close to the desired 0.4m/s, while having knowledge solely of the data-driven dynamics

determined by DSS. In Figure 5.3, we illustrate an example of such a controlled SLIP

trajectory.

In this chapter, we have illustrated the predictive capacity of the models generated

by DSS beyond the information encoded in the structure of the symbolic model, and

applied it to a control task. From analysis to application, DSS provides low-dimensional

abstractions of complex dynamical systems that are both informative and useful towards

the control of these systems.
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CHAPTER 6

Future Work and Conclusions

Multi-modality is a salient feature of many complex systems of interest to the field

of robotics and beyond. However, there do not exist many methods that explicitly an-

alyze and take advantage of this structure. Here, we have introduced DSS to serve this

need. By starting from the assumption that systems exhibit low-dimensional behavioral

structure, DSS constructs a symbolic graphical abstraction that captures distinct system

behaviors. We explored and demonstrated the different properties and applications of the

models generated by DSS. We studied the topology of the DSS graphical models and what

structure they qualitatively capture in the underlying motions, the relative frequencies of

behaviors and how they can be used towards assessing motion quantitatively, and finally

the model predictions themselves and their application in control.

While we hope to have motivated the broad utility of DSS across fields, there are

particular questions that remain to be addressed. First, as with all learning models

that depend on the use of basis functions, the methodology for selecting these functions

is often ad hoc or heuristic. Although this issue is not unique to DSS, it is certainly

a limitation of the approach and circumventing this issue would be greatly beneficial.

Second, the use of the Euclidean metric in DSS when comparing Koopman operators

is inadequate because the space of linear models is invariant under the action of the

GL(n) group [13]. Hence, it would be beneficial to develop a different metric that more

accurately captures the distance between dynamical systems qualitatively instead of an
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element-wise distance. Finally, perhaps the more profound question is to ask what are

the causes of the observed multi-modality in complex systems. Given an understanding

of the mechanisms underlying the behavior of complex dynamical systems, we would be

able to develop a physically-motivated algorithms that we can ground in our knowledge

of the class of systems under study.

Despite lacking analytical physical grounding, we have demonstrated with DSS that

complex dynamics can indeed be compressed into low-dimensional symbolic abstractions

that capture much of the original behavior of the system. In future work, we will take a

more mechanistic approach and develop algorithmic tools to match these physical insights.

By imbuing our algorithms with our fundamental knowledge of physics, we may be able

to develop analysis and control techniques for systems in which alternatives do not exist,

such as spontaneously self-organizing swarms and active matter systems.
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An operator-theoretic viewpoint to non-smooth dynamical systems: Koopman anal-

ysis of a hybrid pendulum. In 2016 IEEE 55th Conference on Decision and Control

(CDC), pages 6477–6484, 2016.

[19] J. D. Hamilton. Time Series Analysis. Princeton University Press, 1994.

[20] B. Heersink, M.A. Warren, and H. Hoffmann. Dynamic mode decomposition for

interconnected control systems. arXiv, 2017.



60

[21] M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decomposition for

large and streaming datasets. Physics of Fluids, 26(11):111701, 2014.

[22] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of Koopman eigen-

functions for control. In arXiv, 2017.

[23] A. Kalinowska, T. A. Berrueta, A. Zoss, and T. D. Murphey. Data-driven gait seg-

mentation for walking assistance in a lower-limb assistive device. In 2019 Interna-

tional Conference on Robotics and Automation (ICRA), pages 1390–1396. IEEE,

2019.

[24] A. Kalinowska, K. Fitzsimons, J. P. A. Dewald, and T. D. Murphey. Online user

assessment for minimal intervention during task-based robotic assistance. In Robotics:

Science and Systems, 2018.

[25] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proc.

National Academy of Sciences, 17(5):315–318, 1931.
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