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ABSTRACT

Robot Thermodynamics

Thomas Alejandro Berrueta

The pursuit of precision has been a driving force in engineering since the earliest days

of the steam engine. Robotics, born from industrial automation, has embraced this focus.

Robots are designed for low tolerances, absolute repeatability, and predictable behavior.

Any uncertainty—in the environment, perception, or movement—is seen as a problem

to be eliminated. This approach stands in contrast to the messy, unpredictable inner

workings of biological organisms. Yet, despite these “flaws,” living beings possess a degree

of autonomy no machine can match. While precise determinism has its place in engineering,

its blind pursuit limits the development of true “life-like” autonomy. This thesis explores

a framework that embraces noise and uncertainty as essential tools, rather than obstacles,

on the path toward more adaptable, and reliable, autonomous systems.

This thesis proposes design, learning, and control principles for embodied agents with

robust, nondeterministic, autonomy. It draws inspiration from (and contributes to the

literature of) statistical mechanics and thermodynamics to produce results applicable to

nonequilibrium systems such as robots and living organisms. Thermodynamics describes
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the flow of energy through matter, and how this flow and its fluctuations can be harnessed

to produce work. Analogously, this thesis—titled Robot Thermodynamics—investigates

how actions are materialized by robot bodies, and how the fluctuations induced by these

actions can affect an agent’s task-capabilities. In this endeavor, our primary unit of analysis

is the path or trajectory distribution, which describes all possible paths through time and

space that an agent can traverse. The structure of an agent’s path distribution depends

on its physical or material properties, as well as its controller or policy. Exploiting the

relationship between agent behavior, embodiment, and decision-making through design,

learning, and control is the explicit goal of robot thermodynamics.

This thesis begins by laying the analytical foundations of robot thermodynamics. This

mathematical overview serves multiple purposes: First, it introduces the principle of

maximum caliber as an inference framework over path distributions. Then, it illustrates

how these inferred path distributions and their properties can be used to characterize and

manipulate the dynamics of complex systems. Lastly, it describes how optimal control

and reinforcement learning can be framed as operations applied onto an agent’s path

distribution. The thesis then proceeds by demonstrating the power of this approach in

several different applications across length-scales—prediction and control of nonequilibrium

collectives, design of energy-harvesting colloidal microparticles, and embodied reinforcement

learning—each advancing the state-of-the-art in their respective fields. Taken together,

the results in this thesis highlight the promise of noise and uncertainty as versatile tools

in the development of robust, life-like, real-world autonomy.
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List of Figures

2.1 Example system: 2D gantry. (A) The state-space of the system

consists of all possible coordinates in the plane within the rectangle

described by the gantry frame. The gantry motors control the horizontal

and vertical position of the end-effector via either position or velocity

commands. (B) When gantry positions are sampled from a normal

distribution at the center of the frame, its states are normally distributed

as well. 37

2.2 Sample path distribution for the gantry system. (A) Snapshots of

sampled gantry states. The horizontal position of the gantry end-effector

is held constant while the vertical position is stochastically sampled from

the system’s path distribution at three points in time. (B) Temporal

cross-sections of the 2D gantry system’s path distribution, P [x(t)]. At

each point in time, the spatial distribution of gantry experiences varies. 39

2.3 Effect of controllers on the sample path distribution of

stochastic control processes. (left) Sample path and support of the

probability density over the paths of an autonomous stochastic process

(i.e., with null controller “0”). (middle and right) Sample paths and

distributions induced by two distinct controllers u1(t) and u2(t). Here, we
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illustrate that depending on the nature of the controller the distribution

over sample paths can be nontrivial. Note that we do not illustrate the

values of the probability densities, only their support. 43

2.4 Effect of controllability on the distribution of reachable states.

a, For the simple system in Eq. 2.29, we depict the effect of controllability

on a naive random action exploration strategy. For a system with ideal

controllabilty properties, isotropic distributions of actions map onto

isotropic distributions of states. b, However, when the system is poorly

conditioned the system dynamics distort the isotropy of the original

input distribution, introducing temporal correlations, and fundamentally

changing its properties as an exploration strategy. 58

2.5 Maximally diffusive trajectories of a spring-loaded inverted

pendulum (SLIP). (A) The SLIP model (left panel) is a 9-dimensional

nonlinear and nonsmooth second-order dynamical system, which is used

as a popular model of human locomotion. (right panel) We choose this

system because it is far from the ideal assumptions under which our

theory is formulated, and yet its sample paths behave as we expect. The

sample paths of the SLIP model with MaxDiff trajectories in the one

dimensional space determined by its x-coordinate approximately match

the statistics of pure Brownian motion in one dimension. (B) Mean

squared displacement (MSD) plots give the deviation of the position of an

agent over time with respect to a reference position. We can distinguish

between diffusion processes by comparing the growth of their MSD over
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time. In general, we expect them to follow a relationship described by

MSD(x) ∝ tγ, where γ is an exponent that determines the different

diffusion regimes (normal diffusion γ = 1, superdiffusion 1 < γ < 2,

ballistic motion γ ≥ 2). As we can see, the behavior of the diffusing SLIP

model is superdiffusive at short time-scales, but gradually becomes more

like a standard diffusion process as we coarse-grain. Similar short-delay

superdiffusion regimes have been observed in systems with nontrivial

inertial properties [43], such as those of our macroscopic SLIP agent. 100

2.6 SLIP maximally diffusive exploration in various settings. (A)

Undirected maximally diffusive exploration in a constrained N-shaped

environment. The boundaries of the environment, as well as safety

constraints, are established through the use of control barrier functions,

which enable safe and continuous maximally diffusive exploration without

modifications to our approach. (B) Undirected multiagent maximally

diffusive exploration of more complex environment: a house’s floor plan.

Here, five agents with identical objectives perform maximally diffusive

exploration. Because maximally diffusive exploration is ergodic, many

tasks are inherently distributable between agents with linear scaling in

complexity. (C) Directed maximally diffusive exploration in a complex

environment. Here, a single agent in a complex environment performs

directed exploration in a potential that encodes a navigation goal. 104

2.7 Directed maximally diffusive exploration of bimodal potential

across systems. (left panel) The single integrator is a linear system
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whose velocities are directly determined by the controller. Hence, its

sample paths behave exactly as free Brownian particles in a potential.

(middle panel) The double integrator is the second-order equivalent

of the single integrator system. In this system, the controller inputs

acceleration commands that the system then integrates subject to its

inertial properties. Despite being an inertial system, its interactions with

the potential approximately follow the behavior of a Brownian particle

in a potential. (right panel) The differential drive vehicle is a car-like

system with simple nonlinear and nonholonomic dynamics with more

complex controllability properties. Nonetheless, when we subject the

differential drive vehicle to directed maximally diffusive exploration it

traverses the potential as desired. 105

2.8 Varying the α parameter of directed MaxDiff exploration. Here,

we are making a differential drive vehicle explore a quadratic potential

centered at the origin under varying choices of α modulating the strength

of the diffusive exploration within the potential. As we increase α the

strength of the diffusion increases as well, leading to greater exploration

of the basin of attraction of the quadratic potential well. 106

3.1 Rattling R is predictive of steady-state occupancy across

far-from-equilibrium systems. (A) shows inhomogeneous anisotropic

diffusion in 2D, where the steady-state density pss(q) is seen to

be approximately given by the magnitude of local fluctuations

log |D(q)| ∝ R(q) (|D|—determinant of the diffusion tensor). (B) shows
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a random walk on a large random graph (1000 states), where Pss—the

probability at a state—is approximately given by E—that state’s exit rate.

(C) shows an active matter system of shape-changing agents: an enclosed

ensemble of 15 “smarticles” in simulation. (D) realizes similar agents

experimentally with an enclosed three-robot smarticle ensemble. The

middle row shows that relaxation to the steady-state of a uniform initial

distribution is accompanied by monotonic decay in the average rattling

value in all cases—analogous to free energy in equilibrium systems. The

bottom row shows the validity of the nonequilibrium Boltzmann-like

principle in Eq. 3.3, where the black lines in (A, B, and C) illustrate the

theoretical correlation slope for a sufficiently large and complex system

(see supplementary materials). The mesoscopic regime in (D) provides

the most stringent test of rattling theory (where we observe deviations in

γ from 1), while also exhibiting global self-organization. In (A and B,

middle) time units are arbitrary, and for (C and D, middle) time is in

seconds, where the drive period is 2 s. 114

3.2 Self-organization in a smarticle robotic ensemble. (A) Front, back

and top view of a single smarticle. Of its five degrees of freedom, we

consider the time-varying arm angles (α1, α2) as “external” driving, since

these are controlled by a pre-programmed microcontroller, while the

robot coordinates (x, y, θ) are seen as “internal” system configuration,

since these respond interdependently to the arms. (B) An example

periodic arm motion pattern. (C) Top view of three smarticles confined
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in a fixed ring, all programmed to synchronously execute the driving

pattern shown in (B). The video frames, aligned on the time-axis of (B),

show one example of dynamically ordered collective “dance” that can

spontaneously emerge under this drive. (D) Simulation video, showing

agreement with experiment in (C). We color-code simulated states

periodically in time, and overlay them for 3 periods to illustrate the

dynamical order over time. (E) shows the system’s configuration space,

built from nonlinear functions of the three robots’ body coordinates

(x, y, θ). The steady-state distribution (blue) illustrates the few ordered

configurations that are spontaneously selected by the driving out of all

accessible system states (orange). 119

3.3 Rattling prediction is robust across system parameters. (A)

illustrates that for larger numbers of smarticles N , the correlations

between pss and R given by Eq. 3.3 persists in simulation. (B) similarly

shows robustness to varying arm-lengths A, shown in relative units

(where the middle link is of length 1). 121

3.4 Self-organized behaviors are fine-tuned to drive pattern.

(A) and (B) show that changing the arm motion pattern slightly (top)

affects which configurations self-organize in the steady-state (bottom,

same 3D configuration space as in Fig. 3.1(E)). (C) By mixing drives A

and B as shown (top), we can isolate only those configurations selected in

both the steady-states (circled in purple). This is an analytical prediction

of the theory, and (D) further verifies its quantitative formulation. 122



17

3.5 Tuning self-organization by modulating drive randomness.

Self-organization relies on the degree of predictability in its driving

forces, in a way that we can quantify and compute analytically. As the

drive becomes less predictable (left to right, all panels), (A) low-rattling

configurations gradually disappear. (B) The corresponding steady-states,

reflecting the low-rattling regions of (A), become accordingly more

diffuse (panels (A) and (B) show simulation data, and use the same 3D

configuration space as Fig. 3.2(E)). (C) verifies that our central predictive

relation Eq. 3.3 holds for all drives here, as all three correlations fall along

the slope of the same line (blue: simulation, black: experiment). The

diminishing range of rattling values thus precludes strong aggregation

of probability, and with it self-organization. (D) shows our theoretical

prediction (solid black line) indicating how the most likely configurations

are destabilized by drive randomness. Colored lines track the probability

pss at 100 representative configurations q in simulation, and dashed black

lines analytically predict their trends. Two specific configurations marked

by ×-s are tracked across analyses. 124

3.6 Destroying self-organization by reducing friction. In (A), we plot

the steady-state probabilities at 200 different configurations under drive A

(shown in Fig. 3.4) as we gradually reduce smarticle friction in simulation

(τ is the velocity decay time-scale). Lines are colored according to state

likelihood in the over-damped regime (τ ∼ 0). The solid black curve is

the analytical prediction for the decay of low-rattling states, which also
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serves as an upper bound for probabilities of other configurations, which

are predicted by dotted curves (with fitting parameter γ = 3.1). (B)

illustrates the robustness of the relation between probability and rattling

as friction in the system is changed. This, along with panel A, shows

that measuring the overdamped dynamics τ = 0 is sufficient to predict

system behaviors for all lower friction values. 126

4.1 Emergence of chemomechanical microparticle self-oscillation.

(A), Schematic of a self-limited system of a single particle resting still at

the air-liquid interface of a H2O2 drop. The particle is composed of a

catalytic patch of Pt (yellow) underneath a polymeric disc (blue). The O2

formation slows down asymptotically over time as the gas bubble restricts

the available catalytic surface area. (B), A 2-particle system, in contrast,

exhibits an emergent and self-sustained beating behaviour as the bubble

merger restores the previously hindered reactivity, thus disrupting the

equilibrium state. (C),(D), Micrograph sequence (in (C)) and tracked

particle coordinates (in (D)) of a 1-particle system that remains still for

an extended period of time. (E),(F), Micrograph sequence (in (E)) and

tracked coordinates (in (F)) of a 2-particle system with emergent beating.

The breathing radius, r(t), is the distance from the collective’s centroid

to each particle, averaged over all particles. (G), The long-term breathing

radius trajectory of the same system as in (E) and (F) demonstrates the

robustness of the beating behaviour. The shaded portion is magnified in

the right panel, where mechanistic model simulations (black) are shown
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to match the experimental curve (blue). (H), The phase portraits of 4

independent 2-particle experiments demonstrate reproducible limit cycles

with closed-loop orbits, confirming the periodicity of collective beating.

Note that to calculate the phase portraits the system’s bubble-driven

discontinuities were processed through a standard finite-impulse response

filter. All phase portraits share the same axes. (I), The recurrence

histograms of the same 4 experiments all display a narrow peak centred

at a period of 3.2s, consistent with visual evidence in (E). All histograms

share the same axes. (J), The beating frequency can be tuned with the

concentration of H2O2. The dependence predicted by the mechanistic

simulations on the basis of a Langmuir-Hinshelwood kinetics (black

curve) matches the experimental measurements (blue markers). Scale

bars, 500µm. 133

4.2 Observations of emergent order via symmetry-breaking. (A),

Schematic of interarrival times in a system of beating microparticles,

defined as the time that transpires between two consecutive bubble

collapses. The interarrival time distribution should be tight (i.e., a

single peak) in a perfectly periodic system, and broad in an aperiodic

system. (B), (top to bottom) Interarrival time distributions and optical

micrographs for homogeneous systems of N = 2, 3, 5, and 8 identical

particles. As N increases, the collective system periodicity gradually

decays and transitions to an exponential interarrival distribution at

N = 8 (bottom, black curve). Scale bar, 500µm. (C), Indeed, we
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observe that the breathing radius of a homogeneous N = 8 system is not

periodic. (D), Asymmetry-induced order across N predicted by Rattling

Theory. A quantification of collective disorder, the system’s Rattling R

is predicted to be lower (i.e. more orderly) if the relative burst intensity

of one particle is increased beyond or decreased below 1x, which signifies

homogeneity. This is experimentally realized by modulating the Pt patch

size on a “designated leader” (DL) particle relative to the others. The

curves are offset to make all R = 0 at 1x intensity to highlight the

effect of system heterogeneity on Rattling. (E), Same as (B), but for

heterogeneous systems of equal particle numbers, where the DL broke

the permutation symmetry. In contrast to the homogeneous systems (B),

they remain robustly periodic across N . It is important to recognize

that the polymeric disc size of a DL is unchanged. Scale bar, 500µm.

(F), Breathing radius for an 8-particle DL system (i.e., N = 7 + 1DL),

which reliably beats periodically. The period of 14.2s extracted from r(t)

coincides with the most probable interarrival time in ((E), bottom). 139

4.3 Rattling as a function of patch size in diffusive model. Here, we

study the effect of a given particle’s U parameter (in analogy to Pt patch

size) on the rattling of collectives of varying sizes. Note that we subtract

the constant offset in rattling due to system size so that R = 0 at U = 0

for all N . We find that any variability in the size of the particle’s patch

produces a drop in rattling, leading to asymmetry-induced order. When a

particle becomes inert as U increases, it stops contributing to system-level
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fluctuations, leading to a modest drop in rattling independent of N .

However, as U decreases the modified particle’s bubble bursts dominate

and effectively become the sole source of variance in the system’s

configurational degrees of freedom. Such coordination among degrees of

freedom leads to a sharp drop in rattling dependent on N . 145

4.4 Effect of designated leader on self-organization. On the left

panel, we simulate the dynamics in Eq. 4.5 and calculate their rattling

and steady-state densities numerically. On the right panel, we consider

experimental data from an 8 particle collective in both standard

(∆UDL = 0%) and designated leader configurations (∆UDL = 40%),

which we then process using the same procedure as for the left panel.

While the absolute magnitudes of parameter values for the simulation

are arbitrary, the ∆UDL values are determined from the actual Pt patch

sizes used on the experimental systems. For both the simulated and the

experimental data, the results are consistent with rattling theory with

γ = 1). 147

4.5 Rattling as a function of patch variance in diffusive model. Here,

we study the effect of randomly assigning according to a log-normal

distribution. Using the Fenton-Wilkinson approximation [134], we are

able to derive an analytical expression for rattling as a function of the

mean and variance of the Ui parameters in Eq. 4.9. For a fixed choice of

mean, this figure depicts how variance in the distribution of Ui affects

rattling across ensembles of different sizes. 148
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4.6 Designated leaders induce periodic limit cycles. (A),(B), Features

of DL beating explained with schematic (A) and micrograph sequence

(B) of a 2-particle heterogeneous system. The leader particle is able

to grow a large bubble promptly and subsume the smaller bubbles

of neighbouring particles across several rounds of bubble coalescence.

Scale bars, 1mm. (C),(D), Phase portraits of homogeneous (C) and

heterogeneous (D) systems of N = 2, 3, 6, and 8. Only the latter is able

to maintain the closed-loop orbits at high particle counts. (E), Schematic

of recurrence time calculation. The recurrence time is the time it takes

to return from a given system configuration to the neighborhood of said

configuration. (F), Recurrence histogram compiling all of the recurrence

times observed across experiments of the 2-particle heterogeneous system

(N = 1 + 1DL). (G), Recurrence entropy as a function of N for both

homogeneous (yellow) and heterogeneous/DL (blue) systems. Low

recurrence entropy is a quantitative indicator of periodic behaviour. The

homogeneous system’s recurrence entropy trends upward, suggesting

a decay in periodicity, while the DL system’s entropy remains low in

accordance with its observed periodicity even at high N . 152

4.7 Designated leaders induced limit cycles in N = 2− 6. Master plots

associated with additional phase portrait experiments. 154

4.8 Designated leaders induced limit cycles in N = 7 − 11. Master

plots associated with additional phase portrait experiments. 155
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4.9 Self-organized oscillation powers a microrobotic arm. (A),

Schematics of the generation of an oscillatory electrical current from

chemomechanical beating. The pair of metals (Pt-Ru or Pt-Au)

patterned on a polymer base constitute the electrodes of a H2O2 fuel

cell, which serves as an on-board voltage source. The periodic bubble

growth and collapse in a beating system separately modulates the

electrical resistance between the electrodes, leading to an oscillatory

current. (B), Optical micrograph of a typical Pt-Ru fuel cell particle.

The entire surface, less the electrode area, is passivated with a thin

layer of insulating SU-8 polymer (shaded). The metallic leads on the

left are not necessary for device operation and are included to facilitate

measurement. Scale bar, 100µm. (C), Short-circuit current density as

a function of H2O2 concentration for a Pt-Ru device. (D),(E), Cyclic

motion of a microrobotic actuator driven by the oscillatory current. The

schematics and micrographs in (D) show the extended and contracted

states of the actuator respectively under the ON and OFF current

conditions, as modulated by the bubble size. The current measurement

over time and the actuator length change (E) closely match, confirming

that the cyclic actuation is driven by the oscillatory current, which itself

is emergent from the particle beating. Scale bar, 2µm. 157

5.1 Temporal correlations break the state-of-the-art in RL. For

most systems, controllability properties determine temporal correlations

between state transitions (see Ch. 2.3.2). (A), Planar point mass with
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dynamics simple enough to explicitly write down and whose policy

admits a globally optimal analytical solution. The system’s 4-dimensional

state space is comprised of its planar positions and velocities. We

parametrize its controllability through β ∈ [0, 1], where β = 0 produces a

formally uncontrollable system. The task is to translate the point mass

from p0 to pg within a fixed number of steps at different values of β,

and the reward is specified by the negative squared Euclidean distance

between the agent’s state and the goal. We compare state-of-the-art

model-based and model-free algorithms, NN-MPPI and SAC respectively,

to our proposed maximum diffusion (MaxDiff) RL framework. (B),(D),

Representative snapshots of MaxDiff RL, NN-MPPI, and SAC agents

(top to bottom) in well-conditioned (β = 1) and poorly-conditioned

(β = 0.001) controllability settings. (C), Even in this simple system,

poor controllability can break the performance of RL agents. As β → 0

the system’s ability to move in the x-direction diminishes, hindering

the performance of NN-MPPI and SAC, while MaxDiff RL remains

task-capable. For all bar charts, data are presented as mean values above

each error bar, where each error bar represents the standard deviation

from the mean with n = 1000 (100 evaluations over 10 seeds for each

condition). All differences between MaxDiff RL and comparisons within

this figure are statistically significant with P < 0.001 using an unpaired

two-sided Welch’s t-test. 167
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5.2 Maximum diffusion RL mitigates temporal correlations to

achieve effective exploration. (A),(B), Systems with different planar

controllability properties. (C), Whether action randomization leads to

effective state exploration depends on the properties of the underlying

state-transition dynamics (see Ch. 2.3.2), as in our illustration of a

complex bipedal robot falling over and failing to explore. (D), While any

given policy induces a path distribution (left), MaxDiff RL produces

policies that maximize the path distribution’s entropy (right). The

projected support of the robot’s path distribution is illustrated by the

shaded gray region. We prove that maximizing the entropy of an agent’s

state transitions results in effective exploration (see Chs. 2.3.4 and 2.5.1).

(E), Our approach generalizes the MaxEnt RL paradigm by provably

optimizing trajectory entropy, as we show in this chapter. (F), This leads

to distinct learning outcomes because agents reason about the impact of

their actions on state transitions, rather than their actions alone. 169

5.3 Maximally diffusive RL agents are robust to random seeds and

initializations. (A), Illustration of MuJoCo swimmer environment

(left panel). The swimmer has 2 degrees of actuation, u1 and u2, that

rotate its limbs at the joints, with tail mass ms and m = 1 for other

limbs. MaxDiff RL synthesizes robust agent behavior by learning policies

that balance task-capability and diffusive exploration (right panel). In

practice this balance is tuned by a temperature-like parameter, α. (B),

To explore the role that α plays in the performance of MaxDiff RL,
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we examine the terminal returns of swimmer agents (10 seeds each)

across values of α with ms = 1. Diffusive exploration leads to greater

returns until a critical point (inset dotted line), after which the agent

starts valuing diffusing more than accomplishing the task. (C), Using

α = 100, we compared MaxDiff RL against SAC and NN-MPPI with

ms = 0.1. We observe that MaxDiff RL outperforms comparisons on

average with near-zero variability across random seeds, which is a formal

property of MaxDiff RL agents. For all reward curves, the shaded regions

correspond to the standard deviation from the mean across 10 seeds.

For all bar charts, data are presented as mean values above each error

bar, where each error bar represents the standard deviation from the

mean with n = 1000 (100 evaluations over 10 seeds for each condition).

All differences between MaxDiff RL and comparisons within this figure

are statistically significant with P < 0.001 using an unpaired two-sided

Welch’s t-test. 179

5.4 Trained system embodiment determines deployed system

performance. (A), Two variants of the MuJoCo swimmer environment:

One with ms = 1 and one with ms = 0.1. As a baseline, we deploy

learned representations on the same swimmer variant trained on. Then,

we carry out a transfer experiment where the trained and deployed

swimmer variants are swapped. (B), Baseline experiments confirm

previous results: All algorithms benefit from a more controllable swimmer.

(C), Both NN-MPPI and SAC performance degrades when deployed on
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a more controllable system than was trained on, which is undesirable.

In contrast, MaxDiff RL benefits from the “Heavy-to-Light” transfer

and we also observe that MaxDiff RL performance further increases in

the “Light-to-Heavy” transfer experiment. For all bar charts, data are

presented as mean values above each error bar, where each error bar

represents the standard deviation from the mean with n = 1000 (100

evaluations over 10 seeds for each condition). All differences between

MaxDiff RL and comparisons within this figure are statistically significant

with P < 0.001 using an unpaired two-sided Welch’s t-test. 186

5.5 Maximally diffusive RL agents are capable of single-shot

learning. (A), Illustration of MuJoCo ant environment. (B), Typical

algorithms learn across many different initializations and deployments of

an agent, which is known as multi-shot learning. In contrast, single-shot

learning insists on a single task attempt, which requires learning through

continuous deployments. Here, we prove that MaxDiff RL agents are

equivalently capable of single-shot and multi-shot learning in a broad

variety of settings. (C), Single-shot learning depends on the ability

to generate data samples ergodically, which MaxDiff RL guarantees

when there are no irreversible state transitions in the environment.

(D), Single-shot learning in the swimmer MuJoCo environment. We

find that MaxDiff RL achieves robust performance comparable to its

multi-shot counterpart. (E), In contrast to the swimmer, the MuJoCo

ant environment contains irreversible state transitions (e.g., flipping
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upside down) preventing ergodic trajectories. Nonetheless, MaxDiff RL

remains state-of-the-art in single-shot learning. Note that we report

returns over a window of 1000 steps in analogy to our multi-shot results,

where episodes consist of 1000 environment interactions. For all reward

curves, the shaded regions correspond to the standard deviation from the

mean across 10 seeds. For all bar charts, data are presented as mean

values above each error bar, where each error bar represents the standard

deviation from the mean and the data distribution is plotted directly

(n = 10 seeds for each condition). All differences between MaxDiff RL

and comparisons within this figure are statistically significant with

P < 0.001 using an unpaired two-sided Welch’s t-test. 189
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CHAPTER 1

Introduction

The field of thermodynamics has been concerned with technological innovation from

its very inception [1]. Unlike most natural sciences, early progress in thermodynamics

was propelled by inventions like the steam engine, which served as a sort of vessel or

“engineering substrate” for scientific discovery. This is evident in the fact that the same

research aimed at understanding and improving the efficiency of heat engines [2] also

established the foundation for such fundamental concepts as entropy and the second law of

thermodynamics [3]. Since then, thermodynamics has maintained a symbiotic relationship

with engineering, providing a theoretical framework for harnessing the inherent randomness

and nondeterminism of molecular motion to achieve useful work and accomplish tasks. This

powerful synergy fueled the Industrial Revolution, which, ironically, created a socioeconomic

demand for increasingly precise, predictable, and efficient machinery [4]. As a result, the

pursuit of low tolerances, repeatability, and determinism—often referred to as “precision

engineering”—became the prevailing philosophy across engineering disciplines.

Robotics, itself emerging from industrial automation, has embraced this doctrine from

its very beginnings [5]. However, this pursuit of determinism has led to a fundamental

tension in robotics. While robots are often designed with the goal of precise and repeatable

behavior, the real world is ever-changing, uncertain, and unpredictable. Robots must

constantly interact with complex environments, cope with unexpected disturbances, and
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make decisions in the face of incomplete information. This mismatch between the deter-

ministic ideals of precision engineering and the stochastic nature of real-world operation

has created a significant challenge for the development of truly autonomous and adaptable

robotic systems.

In this work, we argue that embracing uncertainty, rather than fighting against it, is

essential for advancing the field of robotics. By drawing inspiration from the principles of

thermodynamics, we can develop new approaches to robot design, learning, and control

that explicitly account for—and exploit—inherent randomness and uncertainty in the

real-world. This shift in perspective opens up exciting possibilities for creating robots that

are not only more robust and adaptable but also capable of exhibiting emergent behaviors

and self-organization, much like the complex systems found in nature.

1.1. Main Contributions

This thesis embraces uncertainty and nondeterminism in the search for novel design,

learning, and control principles for embodied autonomy. To this end, it presents a

framework grounded in the statistical physics of the principle of maximum caliber, which

we refer to as robot thermodynamics. Throughout the chapters of this thesis, we develop new

predictive principles, propose alternative design strategies, and derive novel learning and

control methods, each advancing the state-of-the-art in their respective areas of robotics.

We explore these questions through extensive theory-crafting, substantial simulation-

development, and exhaustive experimental validation. By framing design, learning, and

control problems in terms of distributions of stochastic trajectories, this thesis develops
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methods for parsimoniously reasoning about agent embodiment and decision-making as two

sides of the same coin—and, in doing so, it paves the way towards more life-like autonomy.

1.2. Thesis Outline

The main contents of the thesis are subdivided into the following four chapters, the

first of which presents the theoretical backbone for most results discussed in the latter

chapters. We conclude this thesis with an additional chapter that discusses future potential

directions for this body of work.

1.2.1. Foundations of Robot Thermodynamics

In this chapter, we lay down the mathematical foundations of the robot thermodynamics

framework. Many concepts are defined and given an introductory treatment prior to

their use in future chapters. In particular, we introduce the primary mathematical object

of study throughout this thesis—the path (or trajectory) distribution. We proceed by

outlining procedures to infer the path distributions of complex systems through the

principle of maximum caliber. Then, we show how these distributions can be used to make

nontrivial predictions about complex system behavior, such as steady-state occupancy

statistics. Lastly, we outline procedures for reshaping path distributions via control and

policy optimization, which allow us to recover canonical results in optimal control and

reinforcement learning from the perspective of robot thermodynamics.

The contributions of this chapter are the following:
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(1) We present a methodology for inference and synthesis of agent behavior based on

trajectory distributions and their properties, which we refer to as robot thermody-

namics.

(2) We provide an original, unpublished derivation of the steady-state occupancy

statistics of a broad class of stochastic processes that recovers the low-rattling

selection principle.

(3) We present an original, unpublished derivation of Pontryagin’s maximum principle

from the principle of maximum caliber, and establish connections between KL-

control and stochastic optimal control.

The work in this chapter is a combination of original, unpublished results, as well as results

previously published in [6] and [7].

1.2.2. Predicting Self-Organization in Active and Robotic Matter

In this chapter, we explore the first application of our framework: We reinterpret our

steady-state occupancy predictions made in the previous chapter from the perspective

of statistical mechanics in order to develop an understanding of self-organization in far-

from-equilibrium systems. As such, this chapter motivates rattling theory and proposes

it as a candidate explanation for many emergent phenomena in broad classes of systems.

We experimentally validate the theory’s predictions in a robotic active matter system

of “smarticles”—originally introduced by [8]—whose re-design from the ground up into a

platform capable of distributed control is a contribution of this thesis. Lastly, we provide

proof-of-concept demonstrations of control strategies based on the principles of rattling

theory by manipulating drive entropy and frictional interactions.
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The contributions of this chapter are the following:

(1) We present a novel theory of self-organization in nonequilibrium statistical me-

chanics, which we refer to as rattling theory.

(2) We introduce and experimentally validate a Boltzmann-like principle for predicting

the steady-state behavior of complex systems.

(3) We outline multiple methodologies for engineering and designing desired nonequi-

librium steady-state behaviors in complex physical systems.

The work in this chapter consists of results largely published in [6]. As a result, we

acknowledge the contributions of Pavel Chvykov to this work and to the theory in

particular, whose initial developments precede my involvement in this intellectual project.

This work was done in collaboration with the groups of Drs. Jeremy England, Daniel

Goldman, and Kurt Wiesenfeld.

1.2.3. Designing for Emergence in Robotic Microsystems

This chapter explores the first application of robot thermodynamics beyond inference. We

explore how the design parameters of complex systems can be used to reshape their path

distributions, resulting in novel behaviors. To this end, we use our framework to analyze

the complex dynamics of an active collective of colloidal microparticles, developing a

theoretical model that captures their most salient features. Using this model, we optimize

system design parameters in hopes of inducing self-organized states in the system dynamics.

Then, we implement these parameters in an experimental instantiation of the system,

confirming the emergence of self-organized self-oscillations. Lastly, as a proof-of-concept
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demonstration, we illustrate how these self-organized states can be exploited towards

microrobotic task-capabilities by using them to power microrobot arms.

The contributions of this chapter are the following:

(1) We analyze and model from first-principles the complex dynamics of an active

collective of colloidal microparticles.

(2) We present a novel thermodynamic mechanism for asymmetry-induced order in

complex systems grounded in rattling theory.

(3) We exploit self-organization as a means of generating self-oscillating electrical

currents aboard a microparticle collective, which we demonstrate by powering a

state-of-the-art microrobot arm.

The work in this chapter consists of results largely published in [9]. As a result, we acknowl-

edge the contributions of Jingfan Yang, whose experimental design and microfabrication

expertise made this project feasible at all. This work was done in collaboration with the

groups of Drs. Michael Strano and Marc Miskin.

1.2.4. Overcoming Temporal Correlations in Robot Learning

In this chapter, we fully realize the promise of robot thermodynamics as an inference

and synthesis framework for embodied agents. We discuss the challenges that embodied

reinforcement learning agents face, such as violations of the i.i.d. property during data

acquisition. Then, we introduce maximum diffusion reinforcement learning (MaxDiff RL)

in order to overcome these limitations. The chapter proceeds by demonstrating that

MaxDiff RL agents are capable of reliable performance across benchmarks with provable

performance guarantees. Lastly, we also prove that MaxDiff RL agents are capable of
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learning in single-shot deployments, which is essential to real-world deployment of deep

reinforcement learning solutions.

The contributions of this chapter are the following:

(1) We present a novel reinforcement learning framework built from the ground up

with embodied agents in mind, which we refer to as MaxDiff RL.

(2) We prove that MaxDiff RL is a generalization of the state-of-the-art MaxEnt RL

framework, and prove that MaxDiff RL agents are robust to initializations and

are capable of learning in single-shot deployments.

(3) We perform extensive empirical evaluations and achieve state-of-the-art perfor-

mance in spatial navigation robotics benchmarks in RL.

The work in this chapter consists of results largely published in [7]. As a result, we

acknowledge the contributions of Allison Pinosky, whose algorithmic genius provided a

rock solid foundation for our exploration of interesting questions in robot learning.
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CHAPTER 2

Foundations of Robot Thermodynamics

Few fields have had as foundational an impact on the progress of science as statistical

mechanics, without which the quantum revolution could not have taken place. However,

even within the seemingly deterministic realm of classical physics, statistical mechanics

has revealed that true certainty is elusive [10]. Instead of individual particles following

predictable paths, statistical mechanics showed that their behavior is often best understood

through probabilities and distributions, introducing a fundamental uncertainty into our

understanding of the classical world. Much of what drives its predictive power is that it

describes deeper truths than those immanent in the laws of physics. In a sense, statistical

mechanics is simply concerned with deriving mathematical truths about statistical popula-

tions and their constituents. This is the groundbreaking realization first made by E. T.

Jaynes in 1957 [11]—that statistical mechanics can be largely understood as a general

probabilistic inference framework applied to the analysis of physical systems.

Here, I aim to extend this powerful framework beyond inference and into synthesis,

forming the core of what I term Robot Thermodynamics. This shift represents a fundamental

transformation; by considering synthesis, we unlock the potential to both model and specify

goal-oriented behavior. At its heart, robot thermodynamics poses two key questions:

“What is the structure of an optimal agent’s dynamics?” and “How can such dynamics

be realized?” To address these questions, this chapter will cover the representation of

agent dynamics through path distributions, the inference of goal-directed behavior under
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Figure 2.1. Example system: 2D gantry. (A) The state-space of the
system consists of all possible coordinates in the plane within the rectangle
described by the gantry frame. The gantry motors control the horizontal and
vertical position of the end-effector via either position or velocity commands.
(B) When gantry positions are sampled from a normal distribution at the
center of the frame, its states are normally distributed as well.

dynamical constraints, and the synthesis of policies and controllers capable of achieving

such behavior after covering some preliminaries. This chapter carefully builds up the

mathematical vocabulary that will span the entirety of this dissertation, as such its

contributions are many and diverse. These contributions will lead to design, learning, and

control principles that will form the mathematical basis for the applications explored in

future chapters.

2.1. States, Paths, and their Probabilities

In this section, we will cover some mathematical preliminaries leading to our discussion

of path distributions and how we can use them to describe the behavior of robots and

complex dynamical systems. The crux of this approach is to model agent experiences as

random events constrained by their tasks and physical embodiment. To motivate this

perspective in a robotics context, we will consider a 2D gantry as an example system that

will guide us throughout the introduction of preliminary concepts (see Fig. 2.1).
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2.1.1. Random Variables

To model dynamical systems and their behavior in time, we first need to define their states

and the properties of its state-space. For the system in Fig. 2.1(A), we can capture its

behavior by tracking the the planar coordinates of its end-effector, px(t), py(t), at each

point in time, t, which we refer to as its state, x(t) = [px(t), py(t)]
T . At all points in time

over some time interval, the system’s states take value in a state-space determined by the

dimensions of the gantry frame. Expressed more formally, ∀t ∈ T ⊂ R+, we have that

x(t) ∈ X , where X = {(px, py) ∈ [−L,L] × [−L,L]} and L ∈ R+. This state-space has

some properties of interest: X is compact and simply connected, which implies that it is of

finite volume and that every state is accessible from every state. It is important to note,

however, that the state-spaces of more general systems do not often have these properties.

Since the focus of this work is on embodiment rather than perception, agent “experiences”

refer to the states a system can find itself in over time. Equipped with a state-space, we

may now begin to model agent experiences as collections of random variables. Random

variables are functions that map from a sample-space, Ω, onto a measurable state-space,

X . To satisfy the axioms of probability, the sample-space must be a part of a probability

space (Ω,F ,P). The sample-space Ω is the space of possible variable outcomes, whereas

the state-space X represents the values one can measure for each of these outcomes.

The event-space F is a Borel σ-algebra, which is a collection of all possible subsets of

random variable outcomes. Lastly, P : F → [0, 1] is a probability measure that describes

the likelihood of any event [12]. To assess the likelihood of individual samples in the

state-space, the concept of probability density functions can be useful. Probability density

functions p : X → [0,∞) are functions that satisfy the following relationship for any given
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Figure 2.2. Sample path distribution for the gantry system. (A) Snap-
shots of sampled gantry states. The horizontal position of the gantry end-
effector is held constant while the vertical position is stochastically sampled
from the system’s path distribution at three points in time. (B) Temporal
cross-sections of the 2D gantry system’s path distribution, P [x(t)]. At each
point in time, the spatial distribution of gantry experiences varies.

A ∈ X :

(2.1) P(X−1(A)) =

∫
A

p(x)dx,

where X−1 : X → Ω is assumed to exist. In the context of the 2D gantry example,

consider providing random position commands to the system motors. If we model our

gantry dynamics as x(t) = u(t) with u(t) ∼ N (0, Id), then the robot’s experiences can

be modelled by a normally distributed random variable, as in Fig. 2.1(B). Alternatively,

consider the possibility there is actuation noise or uncertainty. Then, we may model the

gantry as x(t) = u(t) + ξ, where ξ ∼ N (0, Id), realizing the same statistics as before when

u(t) = 0. As long as u(t) is constant, the gantry’s experiences may be modelled by a

random variable.
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2.1.2. Stochastic Processes and Stochastic Control Processes

As soon as the system’s experiences become time-varying, we can no longer model them

effectively as a single random variable. In the previous illustration, uncertainty entered

the system directly through its states. As a result, the effect of noise on the system was

static and time-invariant, which allowed us to model agent experiences with a random

variable. However, this changes the moment we consider using velocity commands to

control the gantry. For example, consider the gantry dynamics in the presence of noisy

velocity commands, ẋ(t) = u(t) + ξ, where we use Langevin notation for simplicity with

ξ ∼ N (0, Σ). Now, let u(t) be given by some constant velocity, c = [0, vy]
T , taken in

the negative y-direction. If we ignore boundary conditions and let x(ti) = [0, L]T , then

the gantry’s experiences are distributed in time according to x(t) ∼ N (x(ti)− ct, tΣ) for

all t ∈ [ti, tf ] ⊂ R+, as illustrated in Fig. 2.2. Crucially, the agent’s experiences can no

longer be described by a single random variable, but rather by a collection of random

variables—each distributed according to a different law at each moment in time. Thus, in

this more general setting we must now model gantry experiences as stochastic processes

due to their time-dependent nature. Adapting the definition in [13], stochastic processes

are formally defined in the following way.

Definition 2.1. (Stochastic Process) A stochastic process is a collection of random

variables parametrized by a totally ordered indexing set T ,

{Xt}t∈T when T is discrete, or {X(t)}t∈T when T is continuous,
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defined on a probability space (Ω,F ,P). The sample space Ω is measurable and equipped

with a Borel σ-algebra F , as well as a probability measure P. Each random variable takes

value in a measurable state-space X , and each sample path of the stochastic process takes

value in a measurable space X T with Borel σ-algebra B(X T ).

In other words, stochastic processes are families of random variables indexed according

to some “time-like” set, T . Throughout this thesis, we take the state-space to be some

subset of the reals, X ⊂ Rd. Each individual realization of the stochastic process, ω ∈ Ω,

results in a different sample path, which we typically notate as xT (ω) = {X(t, ω)}t∈T .

When considering processes that are continuous in time, we often take T to be the halfline

or an interval of the reals given by some initial and final time, T = [ti, tf ] ⊂ R+. When

T is discrete, which throughout this thesis we take to mean T = {1, · · · , T}, we write

xT (ω) = {Xt(ω)}t∈T instead. We note that sometimes we omit the ω from our notation

for defining stochastic processes for simplicity, but the dependence on ω is always implicit.

Since we are interested in describing agent experiences directly, and not just the

probabilities of events ω ∈ Ω, we must be able to describe the measures of sets of states

and state trajectories. To this end, we let P(xT ∈ A) = P(x−1
T (A)) for any given A ⊂ X T ,

where we note that x−1
T : X T → Ω. Then, to describe the likelihoods of individual sample

paths, we must define—and assume the existence of—a probability density function. To

this end, for each ω we use x(t) = xT (ω) ∈ X T to denote individual realizations of the

stochastic process, and refer to x(t) as its experiences, state trajectories, or paths. When

T is discrete and finite, e.g., {1, · · · , T}, we use x1:T = xT (ω) ∈ X T instead. Then, the

probability density function associated with the measure is given by P : X T → [0,∞),
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such that

P(xT ∈ A) = P(x−1
T (A)) =

∫
x−1
T (A)

dP(ω) =
∫
A

P [x(t)]Dx(t)(2.2)

=

∫
A

P [x1:T ]Dx1:T ,(2.3)

where Dx(t) and Dx1:T denotes integration over sample paths depending on whether T is

continuous or discrete, in line with the Feynman path integral formalism [14]. Thus, we

will refer to this density over paths as the path or trajectory distribution, and use P [x(t)]

or P [x1:T ] to express the probability density of a given state trajectory. In this formalism,

we also have a natural way to express expected values. Consider some real-valued function

f(·) of xT , then we define its expectation over sample paths as

(2.4) E[f(xT )] =

∫
Ω
f(xT (ω))dP(ω) =

∫
XT

P [x(t)]f(x(t))Dx(t),

which is consistent with our above definition of probability densities over state trajectories.

An important note is that Definition 2.1 merely states that stochastic processes are

parametrized collections of random variables. As such, our definition does not provide

or rely on any information regarding the dynamics or laws describing the time-evolution

of the random variables forming a part of said process. As we saw in our examples in

Figs. 2.1 and 2.2, the dynamics of the underlying process and its properties are essential

to modelling an agent’s experiences. Moreover, in the context of control systems, we saw

in Fig. 2.2 that the choice of controller also plays an important role in the structure of

the agent’s path distribution and their experiences. In general, we model controllers as

functions, u(t) : T → U , that produce control inputs to the system at each point in time,
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Figure 2.3. Effect of controllers on the sample path distribution
of stochastic control processes. (left) Sample path and support of the
probability density over the paths of an autonomous stochastic process (i.e.,
with null controller “0”). (middle and right) Sample paths and distributions
induced by two distinct controllers u1(t) and u2(t). Here, we illustrate that
depending on the nature of the controller the distribution over sample paths
can be nontrivial. Note that we do not illustrate the values of the probability
densities, only their support.

where U ⊂ Rm. Clearly, depending on the nature of the underlying controller and the

system dynamics, the underlying density over system trajectories can vary strongly (see

Fig. 2.3). To reflect this, we extend our definition of stochastic processes as follows.

Definition 2.2. (Stochastic Control Process) A stochastic control process is a stochastic

process (Definition 2.1) on a probability space (Ω,F ,Pu(t)), with indexing set T , where

sample paths take value in a measurable space (X T ,B(X T )), and the measure and its

resulting density Pu(t) : X T → [0,∞) are parametrized by a controller u(t) : T → U .

Thus, we think of control systems as stochastic processes that are parametrized by their

controllers, or equivalently as a collection of distinct stochastic processes for each choice of

controller. As before, this definition does not capture how each random variable is affected

by a choice of controller, but it does acknowledge their dependence on a controller.
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2.1.3. Markov Processes and Markov Decision Processes

Neither of the definitions of stochastic processes provided thus far explicitly describe

the dynamics underlying the time-evolution of their random variables. This is because

doing so requires characterizing the transition structure and dynamical laws governing

the stochastic process, which can be challenging to do in general. One particular class

of stochastic processes where this is doable is discrete-time Markov processes, which are

prevalent across applications of algorithmic decision-making.

Discrete-time Markov processes are stochastic processes (in the sense of Definition 2.1)

with the additional requirement that the probability of any given event is only dependent

on the state attained in the previous event. As a result, the probability density function

associated with a discrete-time Markov process’ probability measure is conditionally

factorable across time increments. To see this concretely, consider a stochastic process

{Xt}t∈T with T = {1, · · · , T} and a given initial condition x1 distributed according to

x1 ∼ ρ. If the stochastic process is Markovian the following relationship holds:

(2.5) P [x1:T ] = ρ(x1)
T−1∏
t=1

p(xt+1|xt),

where p(xt+1|xt) is the conditional state transition density. In other words, for a Markov

process its dynamics only depend on the current state. The dynamics of the process

themselves are fully determined by p(xt+1|xt), which encodes the probability of transitioning

from a given state to any other state at any point in time. When the transition dynamics

do not explicitly depend on time, i.e., when p(xt+1|xt) = p(xt+1+l|xt+l) for any valid l, we

refer to the Markov process as time-homogeneous, which will be our focus.
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In many application areas, the dynamics of the underlying Markov process do not

evolve autonomously in time. Instead, they are subject to inputs such as control actions,

ut ∈ U , that steer their dynamics in particular state trajectories. In this setting, we often

model the action-dependence of the system’s state transitions through state transition

models of the form p(xt+1|xt, ut), where p : X × X × U → [0,∞). When these actions are

deterministically produced by a controller, we may think of them as parameters that shape

the underlying path distribution of the stochastic process, as in Definition 2.2. However,

we may also think of control actions as random variables drawn from a given distribution

at each point in time. This distribution is referred to as a policy and it is typically notated

as π(ut|xt), where π : U × X → [0,∞). An important distinction between this setting

and the standard Markov process setting is that the stochastic nature of control actions

induces a path distribution over the actions themselves, leading to joint path distributions

of the following form:

(2.6) P [x1:T , u1:T ] = ρ(x1)
T−1∏
t=1

p(xt+1|xt, ut)π(ut|xt).

Nonetheless, we can take a look at the expected paths that the system takes by defining

pπ(xt+1|xt) = Eπ[p(xt+1|xt, ut), which results in a distribution

(2.7) Pπ[x1:T ] = ρ(x1)
T−1∏
t=1

pπ(xt+1|xt)

whose structure resembles Eq. 2.5. These expressions formalize the sense in which the role

of a controller or policy is to steer a Markov process.

The process of optimizing an objective function by selecting policies that steer a Markov

process towards desirable states is referred to as a Markov decision process (MDP). MDPs
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are defined as 4-tuples (X ,U , p, r) in terms of the state and action spaces X and U , the

state transition model p, and lastly a bounded reward function r : X × U → [rmin, rmax]

(sometimes we use a cost function instead). Note that MDPs can be defined as 5-tuples

when a reward-discounting factor γ = [0, 1) is included to ensure the convergence of

decision-making processes in infinite-horizon tasks. We will return to the MDP problem

setting when we discuss optimal control and reinforcement learning in future sections.

2.2. The Principle of Maximum Caliber

In proposing that statistical mechanics could be understood as a statistical inference

procedure applied to the states and dynamics of physical systems, E. T. Jaynes presented

a general mathematical framework from which one can perform such inferences: The

principle of maximum entropy (MaxEnt) [11], and later on the principle of maximum

caliber (MaxCal) [15]. In this section, we will briefly review the basics of the MaxEnt and

MaxCal frameworks, as they are essential to the results in this thesis.

Much like other inference frameworks, the underlying goal of MaxEnt and MaxCal is

to find a probability distribution that best describes observations from some underlying

process. What distinguishes both MaxEnt and MaxCal from other inference frameworks

is their ability to incorporate hard constraints into the underlying optimization, which is

essential when dealing with embodied systems subject to the rigid constraints imposed

upon them by the laws of physics. In a sense, MaxEnt and MaxCal attempt to codify

the “common wisdom” of Occam’s razor: If you had to infer the distribution of random

variable from partial information, then the best guess is the one that introduces the least
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additional assumptions—or, equivalently, the one that is least-biased—while remaining

consistent with prior knowledge we might have about the random variable.

To formalize this common wisdom, MaxEnt makes use of information theory and the

concept of entropy, arguing that Shannon entropy and Boltzmann entropy are interchange-

able at some level. Now, let X be an random variable on a probability space (Ω,F ,P)

with some state-space X , and let p : X → [0,∞) be its corresponding probability density

function whose form we are interested in inferring. Then, we can define an entropy operator

S that acts directly on arbitrary probability density functions in the following way:

(2.8) S[p(x)] = −
∫
X
p(x) log p(x)dx.

Using this operator, we can formalize the MaxEnt inference procedure as finding the

distribution pME(x) that is the result of the following optimization:

pME(x) = argmax
p(x)

S[p(x)](2.9)

= argmin
p(x)

DKL(p(x)||puniform)(2.10)

where we note the equivalence between entropy maximization and minimization of a

KL-divergence with respect to a uniform distribution puniform. More generally, prior beliefs

over the candidate distribution, p0(x), can be introduced by minimizing DKL(p(x)||p0(x))

instead. However, as written these optimizations do not produce valid probability densities,

requiring us to introduce constraints into the optimization. To this end, let Ŝ be

(2.11) Ŝ[p(x)] = S[p(x)]− λ0

(∫
X
p(x)dx− 1

)
,
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where λ0 is a Lagrange multiplier enforcing the constraint that the probability density

integrates to 1 over the domain of the random variable. By optimizing Ŝ instead of S, we

can ensure that the resulting density is valid. The resulting optimization is then

(2.12) pME(x) = argmax
p(x)

Ŝ[p(x)].

By incorporating different constraints and priors in this manner, we can use MaxEnt to

infer the statistical properties of different random variables. For example, optimizing the

MaxEnt objective with Eq. 2.11 as written results in the uniform distribution over the

compact domain X . Thus, the least-biased guess we can make about the distribution of a

random variable over a compact domain—when given no additional information—is that

it is uniform, which motivates the sense in which MaxEnt captures the common wisdom

of Occam’s razor. Importantly, distributions that maximize entropy functionals are not

only the “least-biased” distributions subject to constraints—they are also the distributions

with the greatest support over the domain of the distribution. In other words, they are

the ones with the most spread probability mass over the state-space.

Given an understanding of path distributions, we can understand MaxCal as a straight-

forward generalization of MaxEnt from random variables to stochastic processes. In other

words, MaxCal is to densities over state trajectories what MaxEnt is to densities over

states [16]. More formally, let {X(t)}t∈T be a stochastic process over a time interval T on

a probability space (Ω,F ,P) equipped with a path distribution P [x(t)]. In order to infer

the path distribution of some dynamical process, P [x(t)], the MaxCal principle proposes

to optimize the “caliber” of process, which is equivalent to the entropy of the process’
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path distribution,

(2.13) S[P [x(t)]] = −
∫
XT

P [x(t)] logP [x(t)]Dx(t).

Just as before, we require a normalization constraint to make the MaxCal framework

produce valid path distributions, which we can enforce with Lagrange multipliers in the

following way,

(2.14) Ŝ[P [x(t)]] = S[P [x(t)]]− λ0

(∫
XT

P [x(t)]Dx(t)− 1
)
,

and then optimize

(2.15) PMC [x(t)] = argmax
P [x(t)]

Ŝ[P [x(t)]].

In the MaxEnt equivalent of this example, we saw that optimizing Eq. 2.11 results in the

uniform distribution. Here, solving Eq. 2.14 results in a uniform path distribution, which

describes an i.i.d uniformly-random sampling process. In other words, the maximum

entropy sampling process describes the dynamics of an agent capable of teleporting around

the state-space at-will.

Solving MaxEnt and MaxCal problems with different constraints is procedurally

identical. Given an objective function Ŝ that incorporates all relevant constraints, one

proceeds by taking the variational derivative of the entropy functional and setting it to

zero:

(2.16)
δŜ

δp
= 0, or

δŜ

δP
= 0.
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Then, one would solve for pME or PMC as well as for the different Lagrange multipliers in

the expression of Ŝ, which may or may not have closed-form analytical expressions. While

the procedure for solving MaxEnt and MaxCal problems is relatively simple, the real

challenge is to formalize system constraints in ways that are simultaneously analytically

or computationally tractable, as well as true to the underlying system.

Equipped with an understanding of the basics of the MaxCal framework, in the following

sections we will formulate several MaxCal optimizations with different constraints and

priors, and explore their relationship to fields such as physics, design, learning, and control.

In the first few of these sections we will focus on inference, asking first how can we

infer the behavior of complex embodied agents? Then, how can we infer the behavior

of goal-directed agents? In the last few sections we will focus on synthesis techniques

grounded in these principles, asking how can we synthesize optimal goal-directed behavior

based these principles? Our goal will be to illustrate how inferring and manipulating an

agent’s path distributions can provide solutions to many problems of interest, such as

embodied exploration, predicting steady-state behavior, nonlinear optimal control, and

reinforcement learning.

2.3. Continuity, Exploration, and Diffusion

Throughout this section, our goal will be to formalize path continuity as a constraint on

stochastic control processes, and to motivate its potential impact on embodied exploration

and learning. To this end, we will derive solutions to maximum caliber optimizations

with path continuity constraints and discuss their properties from information-theoretic,
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control-theoretic, physics-based perspectives. We note that much of the work in this

section was originally published in the supplement of [7].

2.3.1. Path Continuity and the i.i.d. Assumption

As we saw in the previous section, the unconstrained (but normalized) maximum entropy

path distribution describes a uniformly random sampling process. This is an idealized

sampling process whose samples satisfy the independent and identically distributed (i.i.d.)

assumption. The i.i.d. assumption is ubiquitous in all of machine learning, optimization,

and statistics. Effectively, data samples are i.i.d. when they are all drawn from the same

underlying distribution, and when the probability of drawing a given sample does not

depend on the probability of drawing any other sample. We may envision an i.i.d. sampling

process by imagining an agent capable of teleporting around its environment—one whose

dynamics are discontinuous, such as the idealized 2D gantry system in Fig. 2.1. In general,

robots tend to follow continuous paths through their state-space, as in the 2D gantry

example in Fig. 2.2. Spatiotemporal continuity of experience is a defining feature of

physical embodiment. Thus, as long as data is being sampled by an embodied system, the

i.i.d. property will likely be violated, which has a profound impact on any downstream

learning or data-driven optimization.

Another important consequence of violating the i.i.d. property is sample redundancy.

Consider drawing identically distributed samples from a stochastic process at two particular

points in time, xt ∼ Xt and xt+1 ∼ Xt+1. How much information do we stand to gain

from observing these samples in expectation? This is precisely what Shannon entropy
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quantifies [17]. Generally, Shannon entropy is subadditive:

(2.17) S[p(xt, xt+1)] ≤ S[p(xt)] + S[p(xt+1)].

However, this inequality is saturated if and only if Xt and Xt+1 are statistically

independent—a property uniquely satisfied by maximum caliber sampling processes like

those discussed in the previous section. Therefore, the information gained from individual

observations is only equal to the information gained from a collection of sequential observa-

tions when the underlying samples are independent. In other words, if a sampling process

is not i.i.d., then it is inefficient in the sense that the underlying sequential observations

are informationally redundant and temporally correlated. This observational redundancy is

at the heart of many important questions in robotics, and motivates the need for effective

exploration strategies across robot learning applications.

2.3.2. Effective Exploration and Temporal Correlations

One of the most common exploration strategies in robot learning is randomized action

exploration. The underlying idea being that agents will experience a diverse set of

observations if they take a diverse set of random actions. In the simplest of these methods,

agents merely sample actions randomly from either uniform or Gaussian distributions

to in hopes of producing effective exploration. More sophisticated methods, such as

maximum entropy reinforcement learning [18–20], elaborate on this basic idea by using

policy optimization to learn a distribution from which to sample random actions and

improve agent outcomes. For the purpose of our analysis, these more advanced methods

are functionally equivalent to the simplest methods—they assume that taking random
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actions produces effective state exploration. However, from the perspective of control

theory we know that this is not necessarily the case. For a system to be able to reach

desired states arbitrarily, it must be controllable [21]. In this subsection we will explore

the connection between temporal correlations, controllability, and exploration in systems

with continuous state-space trajectories.

To illustrate how the controllability properties of agents can affect exploration outcomes,

we will briefly consider randomized action exploration in linear time-varying (LTV) control

systems. LTV dynamics can be expressed in terms of continuous-time deterministic

trajectories in the following way:

(2.18) ẋ(t) = A(t)x(t) +B(t)u(t),

where A(t) and B(t) are appropriately dimensioned matrices with state and control vectors

x(t) ∈ X and u(t) ∈ U , and x(t0) = x∗ for T = [t0, t]. The general form of solutions to

this system of linear differential equations is expressed in terms of a convolution with the

system’s state-transition matrix, Ψ(t, t0), in the following way:

(2.19) x(t) = Ψ(t, t0)x
∗ +

∫ t

t0

Ψ(t, τ)B(τ)u(τ)dτ.

We consider these dynamics because by working with LTV dynamics we implicitly consider

a very broad class of systems—all while retaining the simplicity of linear controllability

analysis [22]. This is due to the fact that the dynamics of any nonlinear system that is

locally linearizable along its trajectories can be effectively captured by LTV dynamics.

Hence, any conclusions applicable to the dynamics in Eq. 2.18 will apply to linearizable

nonlinear systems.
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To understand the performance of randomized action exploration in a given LTV

system, we may ask what states are reachable by this system within a finite time interval.

After all, states that are not reachable cannot be explored or learned from. This is precisely

what controllability characterizes:

Definition 2.3. A system is said to be controllable over a time interval [t0, t] ⊂ T

if given any states x∗, x1 ∈ X , there exists a controller u(t) : [t0, t] → U that drives the

system from state x∗ at time t0 to x1 at time t.

While this definition intuitively captures what is meant by controllability, as written it

does not make for an easily verifiable property. To this end, different computable metrics

have been developed that equivalently characterize the controllability properties of certain

classes of systems (e.g., the Kalman controllability rank condition [23]). In particular, here

we will analyze the controllability Gramian of the system.

For our class of LTV systems, characterizing controllability with this method is simple:

(2.20) W (t0, t) =

∫ t

t0

Ψ(t, τ)B(τ)B(τ)TΨ(t, τ)Tdτ,

where the Gramian is a symmetric positive semidefinite matrix that depends on the state-

control matrixB(t) and the state-transition matrix Ψ(t, t0). The Gramian is a controllability

metric that quantifies the amount of energy required to actuate the different degrees of

freedom of the system [24, 25]. For any given finite time interval, the controllability

Gramian also characterizes the set of states reachable by the system. Importantly, when

the controllability Gramian is full-rank, the system is provably controllable in the sense

of Definition 2.3 [21], and capable of fully exploring its environment. However, when
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the controllability Gramian is poorly conditioned, substantial temporal correlations are

introduced into the agent’s state transitions, which can prevent effective exploration—as

we will show.

To draw the connection between random action exploration, controllability, and tem-

poral correlations explicitly, we will now revisit the dynamics in Eq. 2.18 under a slight

modification. Let us design a controller that performs naive action randomization, i.e.,

let u(t) = ξ, where ξ ∼ N (0, Id) and Id is an identity matrix with diagonal of the same

dimension as the control inputs, and 0 is the zero vector of the same dimension. Note

that the system trajectories are now collections of random variables. Then, we have:

(2.21) ẋ(t) = A(t)x(t) +B(t) · ξ.

Here, we abuse notation slightly to minimize the difference between this equation and

Eq. 2.18, but we can interpret the system as having linear Langevin dynamics [26]. With

these modifications in mind, we are now interested in examining the mean and covariance

trajectory statistics in hopes of characterizing the structure of temporal correlations induced

by the agent dynamics. We begin by taking the expectation over system trajectories

described by Eq. 2.19:

E[x(t)|x(t0) = x∗] = E
[
Ψ(t, t0)x

∗ +

∫ t

t0

Ψ(t, τ)B(τ) · ξdτ
]

= Ψ(t, t0)x
∗ + E

[ ∫ t

t0

Ψ(t, τ)B(τ) · ξdτ
]

= Ψ(t, t0)x
∗.

(2.22)
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Hence, the expected sample paths of the dynamics will be centered around the autonomous

paths of the system—that is, the paths the system takes in the absence of control inputs.

We may now characterize the covariance of our system’s sample paths. To do so, let

C[x∗] = E
[
(x(t)− E[x(t)])(x(t)− E[x(t)])T

∣∣x(t0) = x∗
]
be the trajectory autocovariance

about an initial condition x∗. The trajectory autocovariance is a local measure of temporal

correlations in stochastic processes. To see this, let {X(t)}t∈T be a stochastic process de-

fined according to Definition 2.1. Then, an autocovariance function, KXX(t1, t2), expresses

the covariance of the process with itself at any two points in time t1, t2 ∈ T , or

(2.23) KXX(t1, t2) = E
[
(X(t1)− E[X(t1)])(X(t2)− E[X(t2)])

T
]
.

Point-wise autocovariances between the random variables of a stochastic process can then

be integrated over a given time interval [t0, t] ⊂ T for a given initial condition x∗ ∈ X ,

leading to the following result:

∫ t

t0

KXX(τ, t)dτ = E
[
(X(t)− E[X(t)])(X(t)− E[X(t)])T

∣∣X(t0) = x∗
]

= C[x∗].(2.24)

Thus, the trajectory autocovariance, C[x∗], acts as a measure of temporal correlations

along a process’ sample paths by integrating statistical autocorrelations between random
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variables over a given time interval. With these preliminaries taken care of, we have:

C[x∗] = E
[
(x(t)− E[x(t)])(x(t)− E[x(t)])T

∣∣x(t0) = x∗
]

= E
[(
Ψ(t, t0)x

∗ +

∫ t

t0

Ψ(t, τ)B(τ) · ξdτ − E[x(t)]
)

×
(
Ψ(t, t0)x

∗ +

∫ t

t0

Ψ(t, τ)B(τ) · ξdτ − E[x(t)]
)T ∣∣∣x(t0) = x∗

]
= E

[( ∫ t

t0

Ψ(t, τ)B(τ) · ξdτ
)(∫ t

t0

Ψ(t, τ)B(τ) · ξdτ
)T ∣∣∣x(t0) = x∗

]
= E

[ ∫ t

t0

Ψ(t, τ)B(τ) · (ξξT ) ·B(τ)TΨ(t, τ)Tdτ
∣∣∣x(t0) = x∗

]
=

∫ t

t0

Ψ(t, τ)B(τ)B(τ)TΨ(t, τ)Tdτ.(2.25)

By inspection of the above expression and Eq. 2.20, we arrive at the following important

connection:

(2.26) C[x∗] = W (t0, t)

which tells us that for LTV dynamics (and by extension for linearizable nonlinear dynamics),

a measure of temporal correlations—the trajectory autocovariance C[x∗]—is exactly

equivalent to the controllability Gramian of the system. Thus, for a broad class of systems,

an agent’s controllability properties introduce temporal correlations along their state

trajectories. Moreover, in LTV systems these are not state-dependent properties. In other

words,

(2.27) ∇xC[x∗] = ∇xW (t0, t) = 0,
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Figure 2.4. Effect of controllability on the distribution of reachable
states. a, For the simple system in Eq. 2.29, we depict the effect of
controllability on a naive random action exploration strategy. For a system
with ideal controllabilty properties, isotropic distributions of actions map
onto isotropic distributions of states. b, However, when the system is poorly
conditioned the system dynamics distort the isotropy of the original input
distribution, introducing temporal correlations, and fundamentally changing
its properties as an exploration strategy.

where 0 is an appropriately dimensioned zero matrix. However, for linearizable nonlinear

systems, as well as more general nonlinear systems, these properties will be state-dependent.

While our controllability analysis has been restricted to the class of dynamics describable

by linear differential equations with time-varying parameters, we note that the connections

we observe between trajectory autocovariance and controllability Gramians have been

shown to hold for even more general classes of nonlinear systems through more involved

analyses [27].

From Eq. 2.21 we can describe the system’s reachable states by analyzing its state

probability density function, which can be found analytically by solving its associated
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Fokker-Planck equation [28]. To do this, we only require the mean and covariance statistics

of the process, in Eqs. 2.22 and 2.25. The system’s time-dependent state distribution is

(2.28)

p(x, t, t0) =
1√

(2π)d det[W (t0, t)]
exp

[
− 1

2

(
x− Ψ(t, t0)x

∗)TW−1(t0, t)
(
x− Ψ(t, t0)x

∗)]
for some choice of initial conditions at t0, where we have substituted Eq. 2.26 to highlight

the role of controllability in the probability density of states reachable by the system

through naive random exploration. Figure 2.4 illustrates this in a toy dynamical system

with linear dynamics:

(2.29) xt+1 = xt +

β 0

0 1

ut.
We observe that changes in β have an effect on the distribution of reachable states for the

system that are consistent with Eq. 2.28. Thus, the effectiveness of action randomization as

an effective exploration strategy is entirely determined by the controllability properties of

the system—or, equivalently, by a measure of temporal correlations of its state trajectories.

This raises the question, if action randomization is not the right idea then what is?

2.3.3. Undirected Exploration as Maximum Caliber Trajectory Sampling

As we saw in the previous subsection, action randomization is an ineffective exploration

strategy in systems that take continuous paths through their state-spaces. This is the

case even for sophisticated strategies that seek to maximize the entropy of the randomized

action distribution. Instead, in this subsection we will investigate the following question:

What if we instead developed an exploration strategy around maximizing the entropy of
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an agent’s state transitions? To this end, we will make use of the principle of maximum

caliber. However, in order to ensure that our exploration strategy produces paths that are

continuous, we will need to formalize a dynamics-agnostic constraint on path continuity.

What sorts of principles can such a constraint be based upon? Conservation of energy

is not applicable because autonomous systems are inherently nonequilibrium systems.

Nonetheless, the behavior of embodied autonomous systems is constrained by aspects

of their morphology, such as actuation limits. In particular, the rates at which agent

experiences or states can vary—and co-vary—in time are typically bounded, which prevents

them from discontinuously jumping between states by limiting their local rate of exploration.

In fact, this is precisely what we found in the previous subsection, where we saw that

a system’s ability to locally explore space is closely tied to a measure of its temporal

correlations, C[x∗]. Thus, we will choose to constrain the velocity fluctuations of our

stochastic process so that they are finite and consistent with the integrated autocovariance

statistics of the process, which may be determined empirically, and are related to a

system’s controllability properties in a broad class of systems. The use of an empirical (or

learned) autocovariance estimate to quantify velocity fluctuations is important because

different embodied agents have different limitations, which may additionally be spatially

inhomogeneous and difficult to know a priori. Through this constraint, we can ensure that

agent sample paths are continuous in time.

To formulate this path continuity constraint, we must first express the system’s velocity

fluctuations at each point in state space, x∗ ∈ X . We define the system’s velocity
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fluctuations along sample paths x(t) in the following way:

(2.30) ⟨ẋ(t)ẋ(t)T ⟩x∗ =
∫
XT

P [x(t)]

∫
T
ẋ(τ)ẋ(τ)T δ(x(τ)− x∗)dτDx(t),

where δ(·) denotes the Dirac delta function, and we note that the ⟨·⟩ expression is

equivalent to the following expectation: E[
∫
T ẋ(τ)ẋ(τ)

T δ(x(τ)− x∗)dτ ]. We assume that

the tensor described by Eq. 2.30 is full-rank so that the system’s velocity fluctuations are

not degenerate anywhere in the state space of the stochastic process. This assumption is

crucial because it guarantees that our resulting path distribution is non-degenerate. If

we had instead chosen to constrain the system by directly bounding the magnitude of

its velocities (i.e., E[
∫
T ẋ(τ)

T ẋ(τ)δ(x(τ)− x∗)dτ ]) as opposed to its velocity fluctuations,

we would not be able to guarantee the non-degeneracy of the resulting path distribution.

Another important note is that the velocities of the trajectories of the stochastic process

in this expression should be interpreted in the Langevin sense [26]. That is to say, not as

expressions of the differentiability of the sample paths of the underlying stochastic process,

but as a shorthand for an integral representation of the stochastic differential equations

describing the evolution of the sample paths of the system.

We can now express our constraint as,

(2.31) ⟨ẋ(t)ẋ(t)T ⟩x∗ = C[x∗], ∀x∗ ∈ X .

Crucially, these statistics are bounded everywhere in the exploration domain, and we

assume them to satisfy Lipschitz continuity so that their spatial variations are bounded.

We note that linearizability of the underlying agent dynamics is a sufficient condition to

satisfy this property. Hence, we now have equality constraints on the system’s velocity
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fluctuations that can vary at each point in the exploration domain—as one would expect

for a complex embodied system, such as a robot. We note that, as before, we require that

P [x(t)] integrates to 1 so that it is a valid probability density over trajectories, which

introduces another constraint.

With expressions for each of our constraints in hand, we may now express the complete

maximum caliber variational optimization problem using Lagrange multipliers:

argmax
P [x(t)]

−
∫
XT
P [x(t)] logP [x(t)]Dx(t)− λ0

(∫
XT

P [x(t)]Dx(t)− 1
)

(2.32)

−
∫
X
Tr
(
Λ(x∗)T

(
⟨ẋ(t)ẋ(t)T ⟩x∗ −C[x∗]

))
dx∗,

Here, we express the constraints at all points x∗ by taking an integral over all points in

the domain. The λ0 is a Lagrange multiplier enforcing our constraint that ensures valid

probability densities, and Λ(·) is a matrix-valued Lagrange multiplier working to ensure

that the rate of exploration constraints hold at every point in the domain. By solving

this optimization we can obtain an expression for the maximum entropy distribution over

sample paths. As a result, the solution to this problem will determine the distribution over

sample paths with the greatest support, with the most uniformly spread probability mass,

and with the least-correlated sample paths—thereby specifying the statistical properties

of an optimal undirected exploration strategy, subject to a path continuity constraint.

Moreover, as a result of the solution’s ergodic properties, we will also find our solution to

violations of the i.i.d. sampling during embodied exploration.
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2.3.4. Maximally Diffusive Trajectory Statistics

To solve this optimization, we must take the variation of the objective with respect to

P [x(t)] and solve for the optimal trajectory distribution. Remarkably, this can be done

analytically; moreover, we find that the statistics of the maximum caliber sample paths

are given by those of a diffusion process, as shown in the following theorem.

Theorem 2.1. The statistics of the maximum caliber sample paths of a stochastic

process (Definition 2.1) with continuous sample paths (in the sense of Eq. 2.32) are

described by a diffusion process with spatially-varying coefficients.

Proof. Letting T = [t0, t], we begin by substituting Eq. 2.30 into Eq. 2.32, taking its

variation with respect to the probability density δŜ[P [x(t)]]/δP [x(t)], and setting it equal

to 0:

δŜ

δP [x(t)]
= −1−logPmax[x(t)]−λ0−

∫
X

∫ t

t0

Tr
(
Λ(x∗)T (ẋ(τ)ẋ(τ)T )

)
δ(x(τ)−x∗)dτdx∗ = 0.

Then, taking advantage of the following linear algebra identity, aTBa = Tr(BT (aaT )), for

any a ∈ Rm and B ∈ Rm×m; as well as the properties of the Dirac delta, we can simplify

our expression to the following:

δŜ

δP [x(t)]
= −1− logPmax[x(t)]− λ0 −

∫ t

t0

ẋ(τ)TΛ(x(τ))ẋ(τ)dτ = 0,

which allows us to solve for the maximum entropy probability distribution over the sample

paths of our stochastic control process. The solution will then be of the form:

(2.33) Pmax[x(t)] =
1

Z
exp

[
−
∫ t

t0

ẋ(τ)TΛ(x(τ))ẋ(τ)dτ
]
,
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where we have subsumed the constant and Lagrange multiplier, λ0, into a normalization

factor, Z. We note that even without determining the form of our Lagrange multipliers,

the maximum entropy probability density in Eq. 2.33 is already equivalent to the path

probability of a diffusing particle with a (possibly anisotropic) spatially-inhomogeneous

diffusion tensor (see [26], Ch. 9). While there is more work needed to characterize the

diffusion tensor of this process, Λ−1(·), this completes our proof. □

Thus, the least-correlated sample paths, which optimally sample from the exploration

domain through continuous trajectories, are statistically equivalent to diffusion. This is to

say that the distribution of paths with the greatest support over the state space describes

the paths of a diffusion process. Hence, if the goal of some stochastic control process

is to optimally explore and sample from its state space, the best strategy is to move

randomly—that is, to decorrelate its sample paths. An additional benefit of our diffusive

exploration strategy is that we did not have to presuppose that our agent dynamics were

Markovian or ergodic. Instead, we find that these properties emerge through our derivation

as intrinsic properties of the optimal exploration strategy itself. The following corollaries

of Theorem 2.1 follow from the connection to diffusion processes and Markov chains,

and as such more general forms of these proofs may be found in textbooks on stochastic

processes and ergodic theory. Here, we assume that the diffusion tensor in Eq. 2.33, Λ−1(·),

is full-rank and invertible everywhere in the state space. Additionally, for now we will

assume that Λ−1(·) is Lipschitz and bounded everywhere on X . We will later find that

these are not in fact different assumptions from those made in Eqs. 2.30 and 2.31.
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Corollary 2.1.1. The maximum caliber sample paths of a stochastic process stochastic

process (Definition 2.1) with continuous paths (in the sense of Eq. 2.32) satisfy the Markov

property.

Proof. This follows trivially from the temporal discretization of our path distribution

in Eq. 2.33, or alternatively from the properties of Langevin diffusion processes. Letting

xt be the initial condition, we can see that,

pmax(xt+δt|xt) =
1

Z
exp

[
−
∫ t+δt

t

ẋ(τ)TΛ(x(τ))ẋ(τ)dτ
]

≈ 1

Zd
exp

[
− |xt+δt − xt|2Λ(xt)

]
,(2.34)

where we subsumed δt into a new normalization constant Zd for convenience, and note that

the support of pmax(xt+δt|xt) is infinite. Importantly, our local Lagrange multiplier Λ(xt)

enforces our velocity fluctuation constraint within a neighborhood of states reachable from

xt for a sufficiently small time interval δt, which is guaranteed by our Lipschitz continuity

assumption. In what remains of this thesis we use δt = 1 for notational convenience, but

without loss of generality. Thus, our distribution in Eq. 2.34 depends only on the current

state, which concludes our proof. □

Corollary 2.1.2. The maximum caliber sample paths of a stochastic process (Defi-

nition 2.1) with continuous paths (in the sense of Eq. 2.32) in a compact and connected

space X ⊂ Rd are ergodic.

Proof. To prove the ergodicity of the process described by Eq. 2.33, we use Corol-

lary 2.1.1 and the properties of X . We begin by discretizing our optimal stochastic control
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process in time and space such that Pmax[x1:N ] =
∏N−1

t=1 pmax(xt+1|xt), which we can do

without loss of generality as a result of Corollary 2.1.1 and because X is compact, resulting

in a finite space. Importantly, since pmax(xt+1|xt) > 0, ∀xt, xt+1 ∈ X , ∀t ∈ T , and X

is finite and connected, then all states in X communicate. Moreover, because for all

x∗ ∈ X , pmax(x
∗|x∗) > 0, the underlying Markov chain described by the transition kernel

is aperiodic. Therefore, the Markov chain describing the stochastic control process is

ergodic [29]. □

At this point, it is essential to discuss ergodicity more broadly and what it practically

implies about the underlying sampling process. Ergodicity is a property of stochastic

processes requiring that the statistics of samples drawn sequentially from a process match

those of samples drawn i.i.d. from its stationary distribution—as codified by any of many

“ergodic theorems” [30]. To motivate its relevance to optimization and learning with data

sampled from embodied sampling processes, we will explore a simple example. Consider

learning a model describing the dynamics of an embodied dynamical process (e.g., the

dynamics of a boat in turbulent waters). Given observations drawn from {Xt}t∈T , we

might be interested in finding parameters θ that allow a model xt+1 = fθ(xt) to predict

the dynamics of the underlying process. Thus, we might be interested in minimizing a

quadratic loss

(2.35) l(θ) = E[(xt+1 − fθ(xt))
2]

by using gradient descent to find the optimal θ to fit our dynamics model. However, now

there is an issue—doing so would require being able to easily compute l(θ) and ∇θl, and
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the expectation in the definition of l(θ) makes this intractable in almost all application

domains of interest. So, in practice, this problem is solved by optimizing a sample-based

surrogate of the loss

(2.36) l̂(θ) =
1

T

T−1∑
t=1

(xt+1 − fθ(xt))
2

and its gradients ∇θ l̂ from a batch of observations {x1, · · · , xT}. The underlying hope is

that optimizing l̂(θ) is interchangeable from optimizing l(θ), or more precisely that

(2.37) lim
T→∞

l̂(θ) = l(θ).

The problem is that this is explicitly not true unless the underlying process is i.i.d., or

we introduce additional assumptions. However, if the underlying process is ergodic, then

Birkhoff’s ergodic theorem guarantees this relationship still holds. Thus, in a sense, ergodic

sampling is asymptotically “as good as” i.i.d. sampling. With this motivation in mind, we

may now return to the derivation of our exploration strategy.

To finish our derivation and fully characterize the nature of our maximum entropy

exploration strategy, we must return to Eq. 2.33 and determine the form of the matrix-

valued Lagrange multiplier Λ(·). Hence, we will return to our expression for ⟨ẋ(t)ẋ(t)T ⟩x∗

in Eq. 2.30 and discretize our continuous sample paths, which we can do without loss of

generality due to Corollary 2.1.1. Since Eq. 2.30 represents a proportionality, we take out

many constant factors throughout the derivation. Additionally, any constant factor of

Λ(·) would be taken care of by the normalization constant Z in the final expression for

Eq. 2.33. We proceed by discretizing Eq. 2.30, using i and j as time indices and pmax(·|·)
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as the conditional probability density defined in Eq. 2.34. We do this by slicing the time

interval [t0, t] into time indices {1, · · · , N}. Our resulting expression is the following:

(2.38) ⟨ẋ(t)ẋ(t)T ⟩x∗ =
N−1∏
i=1

[ ∫
X
dxi+1 pmax(xi+1|xi)

]N−1∑
j=1

(xj+1−xj)(xj+1−xj)T δ(xj−x∗),

where the path integrals are discretized according to the Feynman formalism [14], using

the same discretization as in our proof of Corollary 2.1.1.

From this expression in Eq. 2.38, we take the following two steps. First, we switch out

the order of summation and product by applying the Fubini-Tonelli theorem. Then, we

factor out two integrals from the product expression—one capturing the probability flow

into xj and one capturing the flow out of it:

=
N−1∑
j=1

∏
i ̸=j,j−1

[ ∫
X
dxi+1 pmax(xi+1|xi)

]
×
∫
X
pmax(xj|xj−1)

∫
X
pmax(xj+1|xj)(xj+1 − xj)(xj+1 − xj)

T δ(xj − x∗)dxj+1dxj,

where × denotes multiplication with the line above. Then we can apply the Dirac delta

function to simplify our expression and get:

=
N−1∑
j=1

∏
i ̸=j,j−1

[ ∫
X
dxi+1 pmax(xi+1|xi)

]
× pmax(x

∗|xj−1)

∫
X
pmax(xj+1|x∗)(xj+1 − x∗)(xj+1 − x∗)Tdxj+1.(2.39)

To simplify further we will tackle the following integral as a separate quantity:

(2.40) I =

∫
X
pmax(xj+1|x∗)(xj+1 − x∗)(xj+1 − x∗)Tdxj+1.
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where we can substitute Eq. 2.34 into Eq. 2.40 to get:

I =

∫
X

1

Zd
e−(xj+1−x∗)TΛ(x∗)(xj+1−x∗)(xj+1 − x∗)(xj+1 − x∗)Tdxj+1.

This integral can then be tackled using integration by parts and closed-form Gaussian

integration. Thus far, we have not had any need to specify the domain in which exploration

takes place. However, in order to evaluate this multi-dimensional integral-by-parts we

require integration limits. To this end, we will assume that the domain of exploration

is large enough so that the distance between x∗ and xj+1 makes the exponential term

approximately decay to 0 at the limits, which we shorthand by placing the limits at infinity:

I =
1

Zd
Λ(x∗)−1

[√
det(2πΛ−1(x∗))

− (xj+1 − x∗)T1e−(xj+1−x∗)TΛ(x∗)(xj+1−x∗)
∣∣∣xj+1=∞

xj+1=−∞

]
,(2.41)

where 1 is the vector of all ones, and the exponential term vanishes when evaluated at

the limits. Note that our assumption on the domain of integration implies that we do not

consider boundary effects, and that the quantity within the brackets is a scalar that can

commute with our Lagrange multiplier matrix.

We are now ready to put together our final results. By combining Eq. 2.41 and plugging

it into Eq. 2.39 we have

⟨ẋ(t)ẋ(t)T ⟩x∗ =
1

Zd

N−1∑
j=1

∏
i ̸=j,j−1

[ ∫
X
dxi+1pmax(xi+1|xi)

]
× pmax(x

∗|xj−1)

√
det(2πΛ−1(x∗))Λ(x∗)−1.(2.42)
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Since ⟨ẋ(t)ẋ(t)T ⟩x∗ is everywhere full-rank, we can see that Λ(x∗)−1 must be full-rank as

well. Next, we recognize that
√

det(2πΛ(x∗)−1) cancels out with Zd, and that we can

re-expand pmax(x
∗|xj−1) as an integral over δ(xj − x∗) and fold it back into the integral

product. Rearranging terms we have:

(2.43) ⟨ẋ(t)ẋ(t)T ⟩x∗ =
N−1∏
i=1

[ ∫
X
dxi+1 pmax(xi+1|xi)

]N−1∑
j=1

δ(xj − x∗)Λ(x∗)−1.

At this point, we note that this expression merely computes the average of Λ(x∗)−1

over all possible state trajectories that pass through x∗, i.e., E[Λ(x∗)−1δ(x(t) − x∗)].

However, because Λ(x∗)−1 is a constant for any given x∗, this expression reduces down

to ⟨ẋ(t)ẋ(t)T ⟩x∗ = Λ(x∗)−1. Thus, using Eq. 2.31, we find that our Lagrange multiplier is

given by:

(2.44) Λ(x∗) = C−1[x∗].

This result is significant because now we can relate a measure of temporal correlations

to the sample path distribution of an optimally exploring agent. Taking this result and

returning to Eq. 2.33, we now have the final form of the maximum entropy exploration

sample path distribution in terms of our measure of temporal correlations:

(2.45) Pmax[x(t)] =
1

Z
exp

[
− 1

2

∫ t

t0

ẋ(τ)TC−1[x(τ)]ẋ(τ)dτ
]
,

where we have added a factor of one half to precisely match the path probability of

diffusive spatially-inhomogeneous dynamics. This final connection can be made rigorous by

noting that C[x∗] is an estimator of a system’s local diffusion tensor through the following
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relation: C[·] = 1
2
D[·]D[·]T for some diffusion tensor D[·] [31, 32]. Lastly, we can discretize

this distribution to arrive at the discrete-time maximum entropy sample path probability

density:

(2.46) pmax(xt+1|xt) =
1

Zd
exp

[
− 1

2
|xt+1 − xt|2C−1[xt]

]
.

Thus, when faced with path continuity constraints, the optimal exploration strategy is

given by diffusion in state space, which concludes our derivation. In line with this, we

describe systems that satisfy these statistics as maximally diffusive.

2.4. The Low-Rattling Selection Principle

In the previous section we largely constrained our interpretation of the maximum caliber

optimization to the context of exploration. However, since the maximum caliber framework

is an inference framework first and foremost, there exist alternative interpretations that

are formally equivalent. Originally, we framed our derivation as an answer to the following

question: What is a strategy that realizes optimal exploration in agents with continuous

trajectories? Equivalently, we may ask: If all we knew about a complex system is that the

local magnitude of their velocity fluctuations is bounded, then what would be our best

guess as to underlying the structure of their dynamics? Thus, the statistics in Eq. 2.45 also

describe the least-biased guess as to the dynamics of an arbitrary complex nonequilibrium

statistical mechanical system with continuous paths through state space.

In contrast to equilibrium statistical mechanics, in nonequilibrium statistical mechanics

there is no obvious analogue of energy—that is, a local scalar quantity capable of predicting

the global steady-state behavior of a complex system. On the basis of Eq. 2.45, our goal
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in this section will be to derive a scalar quantity that is predictive of the state occupancy

statistics of a broad class of nonequilibrium stochastic processes. In other words, we are

interested in deriving a quantity that is capable of predicting self-organization in a broad

class of complex natural and engineered systems. Beyond the scientific value of such

an endeavor, being able to predict self-organization is essential to being able to harness

it towards engineering goals—especially in microsystems design, as we will see in later

chapters. The results presented throughout this section are original and unpublished.

However, they are heavily informed and inspired by a previous publication [6], whose

results will be explored in much greater detail in the following chapter.

In order to find a scalar quantity that is predictive of the state occupancy statistics

of complex nonequilibrium systems, we will explore the properties of the class of Markov

chains described by Eq. 2.46. We being by defining the considering an infinite time interval,

and defining the occupancy measure of a given set σ ⊂ X as

(2.47) ρ(σ) =
∞∑
t=0

γtP(xt ∈ σ) =
∞∑
t=0

γt
∫
σ

p(xt)dxt,

for some γ ∈ (0, 1). The parameter γ is a nondimensional modelling parameter that weighs

the relative contribution of short vs. long trajectories to the steady-state occupation

statistics, as is standard in the study of Markov chains. This parameter is required in

order to guarantee that the resulting occupancy statistics do not diverge. The probability

density function p(xt) expresses the probability of reaching state x after t time steps.

Recalling the definition of a Markovian sample path distribution in Section 2.1.3, we have

P [x0:T ] = µ(x0)
T−1∏
t=1

p(xt+1|xt),
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where µ represents an initial density over the domain of the chain. We may then define

p(xt) in the following way for any t > 0:

(2.48) p(xt) =

∫
X
· · ·
∫
X
µ(x0)

t∏
τ=1

p(xτ |xτ−1)dx0 · · · dxt−1,

with p(x0) = µ(x0). In short, an occupancy measure adds up the probability of reaching a

given state through ever-increasing path lengths.

Because we are interested in finding the occupancy statistics of maximally diffusive

Markov chains, let

(2.49) pmax(xt|xt−1) =
1

Ẑ
exp

[
− 1

2
||xt − xt−1||2C−1[xt]

]
,

and define

ρmax(σ) =
∞∑
t=0

γtPmax(xt ∈ σ) =
∞∑
t=0

γt
∫
σ

pmax(xt)dxt

in terms of the density pmax(xt), whose expression is the same as Eq. 2.48 except for

the substitution of the expression for the maximally diffusive conditional density (i.e.,

Eq. 2.49). While evaluating pmax(xt) is nontrivial in general, we can calculate the first

couple of terms in the sum of ρmax analytically. Given uniform initial conditions, i.e.,

µ(x0) = pmax(x0) = 1/|X |, we have the following trivial initial measure, Pmax(x0 ∈ σ) =

|σ|/|X |. Then, for Pmax(x1 ∈ σ) we have:

Pmax(x1 ∈ σ) =

∫
σ

∫
X
pmax(x1|x0)pmax(x0)dx0dx1 =

∫
σ

1

|X |

∫
X
pmax(x1|x0)dx0dx1

≈ 1

|X |

∫
σ

1

Ẑ1

exp
[
− 1

2
xT1C

−1[x1]x1

]
dx1
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where Ẑ1 =
√

(2π)d det (C[x1]). Although the Gaussian integral formally requires no limits

of integration, here we assume that for large enough X—and for σ far enough away from

∂X—we can ignore boundary effects. Collecting the first couple of terms, we now have:

ρmax(σ) =
∞∑
t=0

γtPmax(xt ∈ σ)

=
|σ|
|X |

+
γ

|X |

∫
σ

1

Ẑ1

exp
[
− 1

2
xT1C

−1[x1]x1

]
dx1 +

∞∑
t=2

γtPmax(xt ∈ σ).(2.50)

To proceed further, we will assume that C[x∗] is bounded and positive definite for all

x∗ ∈ X . That is, we will assume that there exist

(2.51) Σmax = C[x∗max], and Σmin = C[x∗min]

with

(2.52) x∗max = argmaxx∗∈X ||C[x∗]||2, and x∗min = argminx∗∈X ||C[x∗]||2

where || · ||2 is the spectral norm. Furthermore, we will assume that Σmax and Σmin are

isotropic, i.e., that Σmin = λminI and Σmax = λmaxI where I is the identity matrix. In

other words, our assumption can be summarized as stating that the transition statistics

of a maximum caliber diffusion process can be bounded from above and below by two

Brownian motion processes with parameters λmax and λmin, which set its minimum and

maximum diffusivities globally. We can motivate these upper and lower bounds on system

diffusivity in the following ways. The existence of an upper bound on system diffusivities

is explicitly a reasonable assumption for physically-embodied systems, whose diffusivities
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cannot ever be unbounded. On the other hand, the lower-bound is a reasonable assumption

as a result of the full-rankness of C[x∗] everywhere in X .

Now, let PΣmax(xt ∈ σ) correspond to the transition measure of a Brownian motion

process with constant covariance Σ in a bounded, convex set X . Regardless of whether we

choose Σ = Σmax or Σ = Σmin, it is well known that the transition measure of this class

of processes converges to

(2.53) lim
t→∞

PΣmax(xt ∈ σ) =
|σ|
|X |

under reflecting boundary conditions, which we will now also assume for the purposes of

this derivation. For this class of processes, it has recently been shown that the convergence

rate of the transition measure is exponentially fast in t regardless of initial conditions and

dim(X ) [33]. In line with these results, we make the following simplifications to our results

in Eq. 2.50:

ρmax(σ) ≈
|σ|
|X |

+
γ

|X |

∫
σ

1

Ẑ1

exp
[
− 1

2
xT1C

−1[x1]x1

]
dx1 +

∞∑
t=2

γtPΣmax(xt ∈ σ)

≈ |σ|
|X |

+
γ

|X |

∫
σ

1

Ẑ1

exp
[
− 1

2
xT1C

−1[x1]x1

]
dx1 +

∞∑
t=2

γt
|σ|
|X |

=
(γ2 − γ + 1

1− γ

) |σ|
|X |

+
γ

|X |

∫
σ

1

Ẑ1

exp
[
− 1

2
xT1C

−1[x1]x1

]
dx1,(2.54)

where we used the convergence properties of geometric series under the assumption that

PΣmax(xt ∈ σ) converges quickly to the uniform measure (i.e., for t ≥ 2). Thus, in this

approximation long paths contribute uniformly to the background occupation measure of a
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given set. This is reminiscent to the assumption that the underlying system dynamics are

“messy” in [6].

Now, we can define the occupation density of a given state (as opposed to the occupation

measure of a given set) as the following limit:

ρmax(x) = lim
ϵ→0+

1

Vϵ
ρmax(Bϵ(x))

=
γ2 − γ + 1

|X |(1− γ)
+

γ

|X |Ẑ(x)
exp

[
− 1

2
xTC−1[x]x

]
= ρconst + ρvar(x)(2.55)

where we let σ = Bϵ(x) be a d-dimensional ball of radius ϵ > 0 centered at x with volume

Vϵ, and Ẑ(x) =
√

(2π)d det (C[x]). In short, we can see that the occupation density of any

given state can be written as the sum of a constant density that assigns a “background”

probability to every state in X , and a state-dependent density that actually determines

which states are more likely than others.

The relative magnitudes of ρconst and ρvar(x) effectively determine the balance between

diffusive and self-organizing behaviors in a complex nonequilibrium system. For example,

if ρconst is too high, then diffusive randomness will disorder the system and prevent self-

organization. Because of the way that ρconst and ρvar(x) depend on γ, we can understand

the potential for self-organization in terms of the relative contribution of paths of different

lengths. In the γ → 0 limit, only short paths contribute probability mass and the system

is essentially completely memoryless, with only the initial density contributing to the

occupancy statistics. Interestingly, as γ → 1 the contribution from the uniform background

density increases as well (diverging at γ = 1), resulting in uniformly random occupancy
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statistics again. This is because in this limit we are increasingly valuing the occupancy

contributions of long paths, whose transition density converges exponentially fast to

uniform, as we saw in Eq. 2.53. Thus, in order for self-organization to occur within the

context of this theory, the underlying systems can neither be infinitely sensitive to every

detail of every state transition, nor completely memoryless—in other words, they need to

be simultaneously dissipative yet adaptive [34, 35].

For the rest of this derivation, we will now focus our attention on the ρvar(x)/ρconst >> 1

regime, where self-organization can spontaneously occur and dominate over the uniform

probability background. Since we are interested in predicting the relative likelihood of

states, as opposed to raw occupancy, we will also focus directly on ρvar(x). Because

we know that ||Σmax||2 ≥ ||C[x]||2 ≥ ||Σmin||2 for all x ∈ X , we will look to bound the

contributions of ρvar(x) to the occupation density through the following closely related

densities:

ρΣmin
var (x) =

γ

|X |Ẑmin
exp

[
− 1

2
xTΣ−1

minx
]

ρΣmax
var (x) =

γ

|X |Ẑmax
exp

[
− 1

2
xTΣ−1

maxx
]
.

Then, recalling that Σmax = λmaxI and Σmin = λminI, we can write the logarithms of all

relevant distributions in the following way:

log ρvar(x) = log γ − log |X | − d

2
log 2π − 1

2
xTC−1[x]x− 1

2
log detC[x]

log ρΣmax
var (x) = log γ − log |X | − d

2
log 2π − 1

2λmax
||x||22 −

1

2
log λdmax

log ρΣmin
var (x) = log γ − log |X | − d

2
log 2π − 1

2λmin
||x||22 −

1

2
log λdmin.
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Now, we are ready to make our final assumption and arrive at our final result. Assume

that the underlying system is high-dimensional enough (i.e., d >> 1), and that global

parameters λmin >> 1 and λmax >> 1 are large enough such that

log ρΣmax
var ≈ const− 1

2
log λdmax

log ρΣmin
var ≈ const− 1

2
log λdmin.

In other words, assume that the underlying system is “sufficiently complex and messy.”

Then, because 1
2λmin

||x||22 ≤ 1
2
xTC−1[x]x ≤ 1

2λmax
||x||22 for all x ∈ X , we also have

log ρvar(x) ≈ const− 1

2
log detC[x].

Lastly, let R(x) = 1
2
log detC[x] be termed “rattling” and then we have

(2.56) ρvar(x) ∝ e−R(x).

Note that under this set of assumptions, the support of ρvar(x) is the entirety of X ,

confirming the ergodicity of maximally diffusive trajectory statistics. This relationship

between rattling and state occupancy is known as the “low-rattling selection principle,”

which was originally published in [6] under a different theoretical framing, as we will

discuss in a later chapter of this thesis. As shown in Eq. 2.56, the low-rattling selection

principle states that in complex systems the states that “rattle” the least are the ones with

greatest occupation density. Thus, we have shown that rattling is a scalar quantity that is

predictive of the state-occupancy statistics of a broad class of complex nonequilibrium

statistical mechanical processes, which concludes our derivation.
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Characterizing the range of settings under which this approximation holds and is useful

is essential. Intuitively, and as we have already discussed, it holds when the system is

“sufficiently messy” (i.e., when λmin is large enough). However, it is also important to

note that this approximation is only useful when the ratio λmax/λmin is sufficiently large

(i.e., λmax/λmin >> 1). Otherwise, 1
2
log λdmin ≤ 1

2
log detC[x] ≤ 1

2
log λdmax will not vary

enough for ρvar(x)/ρconst >> 1 and meaningfully contribute to the overall occupation

density ρmax(x). In other words, if λmax/λmin is not much greater than 1, then ρmax

will be approximately uniform. Now that we are equipped with a robust theoretical

understanding of the behavior of complex dynamical systems, we will explore applications

of this framework in the design and control of robot collectives across scales in the following

chapters—finding ways to harness and exploit randomness and self-organization towards

novel task-capabilities in robotic systems.

2.5. Free Energy, Optimal Control, and Reinforcement Learning

In previous sections, we have largely focused on the role of maximum caliber as an

inference framework. In order to extend from inference to synthesis—and thus to realize

the potential of robot thermodynamics as a framework—we need to expand beyond entropy

functional maximization and into free energy minimization. In this section, we will discuss

free energy as means of encoding goal-directed behaviors effectively as priors within the

maximum caliber framework. Then, we will discuss how one can derive results such as

Pontryagin’s maximum principle within our framework [21]. Lastly, we will also briefly

discuss how to frame reinforcement learning (RL) problems within our framework as

applications of Kullback-Leibler (KL) divergence control [36]. As in the previous section,
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much of the work in this section was originally published in the supplement of [7] but

original, unpublished contributions will be highlighted.

2.5.1. Directed Exploration as Maximum Caliber Trajectory Sampling

Prior to introducing control as an element into our optimizations, we will first consider

introducing external notions of “importance” to system states—a prerequisite for solving

optimal control and RL problems. In many exploration problems, there is an a priori

understanding of what regions of the exploration domain are important or informative.

For example, in RL this is encoded by the reward function [18], and in optimal control this

is often encoded by a cost function or an expected information density [37, 38]. In such

settings, one may want an agent to explore states while taking into account a measure

of state desirability, which leads to directed (or active) exploration. In order to realize

directed exploration, we require a notion of state desirability that is amenable to the

statistical-mechanical construction of our approach. To this end, we can reformulate our

maximum caliber objective into a “free energy” minimization objective by introducing a

bounded, real-valued potential function, V (·). Across fields, potential functions are used

to ascribe (either a physical or virtual) cost to system states. A potential function is

then able to encode tasks in control theory, learning objectives in artificial intelligence,

desirable regions in spatial coverage problems, etc. Hence, we will extend the formalism

presented in the previous sections to encode goal-directed behavior by considering the

effect of potential functions.

Since our maximum caliber functional is an expression over all possible trajectories, we

need to adapt our definition of a potential to correctly express our notion of “free energy”
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over possible system realizations. To this end, we define the trajectory averages of our

potential function over T = [t0, t] in the following way,

(2.57) EP [V [x(t)]] =

∫
XT

P [x(t)]

∫ t

t0

V (x(τ))dτDx(t),

which captures the average cost over all possible system paths (integrated over each possible

state and time for each possible path). Note that we use the brackets to distinguish between

our state-based and trajectory-based potential functions, such that V [x(t)] =
∫ t
t0
V (x(τ))dτ .

Formally, we must assume that EP [V [x(t)]] is bounded, which in practice will be the case

for policies and controllers derived from these principles. Our new free energy functional

objective is

(2.58) argmin
P [x(t)]

EP [V [x(t)]]− Ŝ[P [x(t)]],

where we use Ŝ[P [x(t)]] as a short-hand for the argument to Eq. 2.32, but note that in

principle it could represent any constrained entropy functional. Thankfully, finding the

optimal path distribution does not require redoing all the work carried out in Chs. 2.3.3

and 2.3.4. All that’s needed is to take the variation of Eq. 2.57 with respect to P [x(t)] and

integrate it into the optimal path distribution. As this arithmetic is very similar to the

derivation provided in the proof of Theorem 2.1, we omit it here. The resulting minimum

free energy path distribution is then

(2.59) P V
max[x(t)] =

1

Z
exp

[
−
∫ t

t0

(
V (x(τ)) +

1

2
ẋ(τ)TC−1[x(τ)]ẋ(τ)

)
dτ
]
,
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which corresponds to the path distribution of a diffusion process in a potential field [26].

Hence, when constrained to continuous paths the optimal directed exploration strategy

scales the strength of local diffusion relative to the desirability of the state—lowering

diffusivity if the state is desirable, and increasing it if the state is undesirable. In this

sense, the net effect of the potential is to bias the diffusive exploration process. We refer

to systems satisfying such statistics as maximally diffusive with respect to the underlying

potential.

As an aside, we note that,

(2.60) P V
max[x(t)] = Pmax[x(t)] · e−V [x(t)]

from which we can recover Pmax[x(t)] in the absence of a potential (i.e., V [·] = 0). Moreover,

we note that expression above can be applied to discrete-time settings as well:

(2.61) P V
max[x1:N ] =

N−1∏
t=1

pmax(xt+1|xt)e−V (xt),

where we have discretized agent state trajectories without loss of generality. Remarkably,

this path distribution resembles the form of those used in the control-as-inference liter-

ature [36]. Lastly, an interesting note is that potential functions play a similar role in

free energy optimizations as priors play in maximum caliber optimizations. For example,

solving

(2.62) argmin
P [x(t)]

DKL(P [x(t)]||P0[x(t)]),
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with P0[x(t)] = e−V [x(t)] is formally equivalent to solving an unconstrained free energy

optimization problem. Thus, we can use potential functions to codify goal-directed priors

onto maximum caliber optimizations more generally.

What are the properties of an agent that is maximally diffusive with respect to a

potential? Since we already know that the sample paths of agents applying our undirected

exploration strategy are Markovian, as long as the potential function and its interactions

with our agent are memoryless the sample paths generated by Eq. 2.58 will continue to be

as well. However, ergodicity is a more challenging property to ascertain as it depends on the

properties of the underlying potential function and of our diffusion process. Nonetheless,

in the following theorem we show that the trajectories of an agent successfully diffusing

according to our directed exploration strategy in a non-singular potential will continue to

be ergodic under some mild assumptions.

Theorem 2.2. The minimum free energy sample paths of a stochastic process (Defi-

nition 2.1) with continuous paths (in the sense of Eq. 2.58) in a compact and connected

space X ⊂ Rd are ergodic.

Proof. The proof of this theorem can be easily arrived at by extending the proof of

Corollary 2.1.2. As long as V (·) is bounded everywhere in the domain, we may discretize the

stochastic control process in space and time everywhere in the domain, as in Corollary 2.1.2.

Then, we can see that pVmax(xt+1|xt) = pmax(xt+1|xt)e−V (xt) > 0, ∀xt, xt+δt ∈ X , ∀t ∈ T .

This is because we have already shown that pmax(·|·) > 0 in Corollary 2.1.2, and because

of the properties of the potential. Thus, the underlying Markov chain described by the
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pVmax(xt+1|xt) transition kernel is aperiodic and all states communicate, which guarantees

ergodicity and concludes our proof. □

Hence, the net effect of the potential is to reshuffle probability mass in the stationary

distribution of the agent’s underlying Markov chain. We note that these proofs can be

carried out without discretizations by instead invoking the physics of diffusion processes,

as in [39] where the authors proved that heterogeneous diffusion processes in a broad

class of non-singular potentials are ergodic when the strength of the potential exceeds

the strength of diffusion-driven fluctuations. However, here we limit ourselves to methods

from the analysis of stochastic processes. In short, path-continuity-constrained minimum

free energy exploration leads to ergodic coverage of the exploration domain with respect to

the potential. We note that this is an important result when it comes to the applicability

of our results in robotics and RL, as we will illustrate in future sections.

2.5.2. Optimal Control as Path Likelihood Maximization

Equipped with a means of encoding goal-directed behavior within the maximum caliber

framework, we are now prepared to make the jump from inference and into synthesis.

This is because we can largely think of cost or reward functions as potentials that ascribe

preferences over states and controllers u(t) (or policies π(·|·)). However, so far we have

only sought to derive and characterize the goal-directed path distributions of autonomous

stochastic processes—that is, those in which we do not explicitly model or account for

the influence of control actions. In order to frame synthesis problems we will need to

consider stochastic control processes (see Definition 2.2) instead, which lie at the heart
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of the robot thermodynamics framework. We note that the results in this subsection are

original, unpublished contributions of this thesis.

The primary distinguishing feature of a stochastic control process is the influence of

a controller u(t). In short, we think of controllers as parameters of a stochastic control

process’ underlying measure and, consequently, of its path distribution Pu(t)[x(t)]. For any

given maximum caliber variational optimization, we fix u(t) such that taking variations

with respect to Pu(t)[x(t)] is well-defined. Additionally, this allows us to treat cost and

reward functions in the same way as we treat potentials, since for any fixed u(t) a given cost

function L[x(t), u(t)] =
∫ t
t0
l(x(τ), u(τ))dτ is only a function of the control process’ states.

With this in mind, we may now outline the core procedures of the robot thermodynamics

framework.

As discussed earlier, robot thermodynamics poses two key questions: “What is the

structure of an optimal agent’s dynamics?” and “How can such dynamics be realized?”

To answer the first of these questions, we make use of the maximum caliber principle. Let

Ŝ[Pu(t)[x(t)]] be the standard entropy functional with any given additional constraints.

Then, for a given u(t) and cost function L[x(t), u(t)] over a time interval [t0, t], we can infer

the structure of the optimal agent’s path distribution by solving the following optimization:

(2.63) argmin
Pu(t)[x(t)]

EPu(t)
[L[x(t), u(t)]]− Ŝ[Pu(t)[x(t)]].

We may find the solution to this problem by taking the variation of the objective function

with respect to Pu(t)[x(t)] and setting it to zero, leading to some optimal path distribution,

P ∗
u(t)[x(t)]. However, knowing the structure of the optimal dynamics does not mean that

we know how to synthesize controllers that are likely to realize desirable trajectories (i.e.,
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we still need P ∗
u∗(t)[x(t)]). Thus, we require a means of answering the second of our two

key questions.

Throughout the rest of this subsection, we will interpret this question in the following

way: How can we choose controllers that increase the likelihood of sampling desirable

trajectories? While we explore alternative formulations in the following subsection, for now

we approach this question from the perspective of the variational principle of maximum

likelihood [40]. Thus, given an optimal path distribution, P ∗
u(t)[x(t)], we are interested

in finding a controller that maximizes the log-likelihood of desirable agent trajectories,

logP ∗
u(t)[x(t)]. That is, a controller that maximizes the following objective,

(2.64) argmax
u(t)

logP ∗
u(t)[x(t)],

whose optimizer u∗(t) maximizes the likelihood of desirable agent trajectories. While

we have presented this procedure as two separate questions, we note that we could also

interpret them as a min-max optimization:

(2.65) argmax
u(t)

(
argmin
Pu(t)[x(t)]

EPu(t)
[L[x(t), u(t)]]− Ŝ[Pu(t)[x(t)]]

)
.

As an example of this procedure in action, we will apply this procedure to an agent

with dynamics given by ẋ(t) = f(x(t), u(t)). First, we must infer the structure of the

agent’s goal-directed trajectory statistics. To this end, we will formulate a minimum free

energy optimization with respect to an objective L[x(t), u(t)] =
∫ t
t0
l(x(τ), u(τ))dτ over

an interval [t0, t]. Since we can only consider dynamically feasible trajectories, we must

include a constraint on the agent dynamics in our optimization. This can be done in the
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following way,

(2.66) EPu(t)

[ ∫ t

t0

λT (τ)
(
f(x(τ), u(τ))− ẋ(τ)

)
dτ
]
= 0

by introducing a time-varying Lagrange multiplier λ(t). As usual, we also include a

normalization constraint. The complete optimization problem is then the following:

argmin
Pu(t)[x(t)]

EPu(t)
[L[x(t), u(t)]] +

∫
XT

Pu(t)[x(t)] logPu(t)[x(t)]Dx(t)+(2.67)

EPu(t)

[ ∫ t

t0

λT (τ)
(
f(x(τ), u(τ))− ẋ(τ)

)
dτ
]
+ λ0

(∫
XT

Pu(t)[x(t)]Dx(t)− 1
)
.

Now, let δF/δPu(t) represent the variational derivative of the free energy optimization

objective with respect to the path distribution, which we can evaluate analytically and set

to zero:

(2.68)

δF

δPu(t)
= −1− logP ∗

u(t)[x(t)]− λ0 +

∫ t

t0

l(x(τ), u(τ)) + λT (τ)(f(x(τ), u(τ))− ẋ(τ))dτ = 0.

With some simple arithmetic we arrive at the optimal path distribution,

(2.69) P ∗
u(t)[x(t)] =

1

Z
exp

[
−
∫ t

t0

l(x(τ), u(τ)) + λT (τ)(f(x(τ), u(τ))− ẋ(τ))dτ
]
.

While we do not yet have an analytical expression for the Lagrange multiplier λ(t), we

may still formulate the maximum likelihood optimization, which leads to

(2.70) argmin
u(t)

∫ t

t0

l(x(τ), u(τ)) + λT (τ)(f(x(τ), u(τ))− ẋ(τ))dτ,
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where we note that we changed the sign on the objective function and changed the

maximization into a minimization. Instead of using Lagrange multipliers, we could have

equivalently written the following optimization

argmin
u(t)

∫ t

t0

l(x(τ), u(τ))dτ,(2.71)

s.t. ẋ(τ) = f(x(τ), u(τ)),∀τ ∈ [t0, t],

which we recognize as the standard form of an optimal control problem. Thus, maximizing

the log-likelihood of desirable maximum caliber sample paths is equivalent to optimal

control.

Returning to Eq. 2.70, we will proceed by deriving first-order optimality conditions for

our objective. That is, taking the variations of our objective function with respect to x(t)

and u(t). To this end, let

L(x(t), u(t), λ(t)) =
∫ t

t0

l(x(τ), u(τ)) + λT (τ)(f(x(τ), u(τ))− ẋ(τ))dτ

=

∫ t

t0

l(x(τ), u(τ)) + λT (τ)f(x(τ), u(τ))− λT (τ)ẋ(τ)dτ(2.72)

be a Lagrangian. Using integration by parts on the last of these terms:

(2.73) −
∫ t

t0

λT (τ)ẋ(τ)dτ = λT (t0)x(t0)− λT (t)x(t) +

∫ t

t0

λ̇T (τ)x(τ)dτ.
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This can then be substituted back into Eq. 2.72 to get

L(x(t), u(t), λ(t)) =
∫ t

t0

(
l(x(τ), u(τ)) + λT (τ)f(x(τ), u(τ))+λ̇T (τ)x(τ)

)
dτ

+ λT (t0)x(t0)− λT (t)x(t).(2.74)

Lastly, to satisfy first-order optimality conditions we know that δL
δx(t)

= 0 and δL
δu(t)

= 0.

Performing these operations we arrive at the following system of ordinary differential

equations equations:

ẋ(t) = f(x(t), u(t))(2.75)

λ̇(t) = −δf
δx
λ(t)− δl

δx

T

0 =
δl

δu
+ λT (t)

δf

δu
.

These differential equations (and their boundary conditions) describe the conditions that

the maximum likelihood sample paths of our stochastic control process must satisfy in

order for our controller to be optimal. These conditions are also known as Pontryagin’s

maximum principle [21], and they form the basis of a broad swath of the field of optimal

control. Thus, the framework of robot thermodynamics is capable of reproducing canonical

results in control theory. As we will show in the following section, this framework is also

capable of leading us in novel directions.

2.5.3. Reinforcement Learning as Path-Based KL-Control

In the previous subsection, we formulated an optimization problem in order to find a

controller that maximizes the likelihood of desirable agent trajectories, and in doing so we
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recovered some key results in optimal control. However, in doing so we implicitly assumed

that the underlying controller was deterministic. Here, we consider the alternative scenario

in which we cannot think of controllers as parameters, and instead we use stochastic

policies to specify the statistics of agent behavior. In doing so, we reformulate the second

question of robot thermodynamics into: How choose policies that match the trajectory

statistics of desirable trajectories? We note that much of the contents of this subsection

contents are original, unpublished contributions of this thesis.

As a result of this question’s connection to policies and MDPs, throughout this

subsection we switch to working with discrete-time representations of path distributions.

In turn, this means that our maximum caliber inference procedure changes into the

following form,

(2.76) argmin
P [x1:T ,u1:T ]

EP [L[x1:T , u1:T ]]− Ŝ[P [x1:T , u1:T ]],

where the path distribution is now a joint distribution that treats control sequences as

sample paths of an separate stochastic process. Now, let Ŝ[P [x1:T , u1:T ]] = S[P [x1:T , u1:T ]]+

C[P [x1:T , u1:T ]], where C[P [x1:T , u1:T ]] represents any constraints we may impose on the

path distribution. Then, as previously discussed in Eq. 2.10, we may write Eq. 2.76

equivalently as

(2.77) argmin
P [x1:T ,u1:T ]

EP [L[x1:T , u1:T ]] +DKL(P [x1:T , u1:T ]||P0[x1:T , u1:T ]) + C[P [x1:T , u1:T ]]

with P0[x1:T , u1:T ] = Puniform, which we may then attempt to solve in the usual way.

However, because policies and state transition models are explicitly probabilistic objects,

incorporating constraints as Lagrange multipliers is less natural. Instead, we may impose
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requirements on path distributions by using priors other than Puniform in Eq. 2.77 and

letting C be zero, i.e.,

(2.78) argmin
P [x1:T ,u1:T ]

EP [L[x1:T , u1:T ]] +DKL(P [x1:T , u1:T ]||P0[x1:T , u1:T ]).

In general, solutions to such optimizations will take the form

(2.79) P ∗
0 [x1:T , u1:T ] = P0[x1:T , u1:T ]e

∑T
t=1 γ

tr(xt,ut),

where the influence of the prior factors and where we let −L[x1:T , u1:T ] =
∑T

t=1 γ
tr(xt, ut)

to match the discounted MDP setting where objectives are typically framed in terms of

reward functions r(xt, ut) instead of cost functions.

Despite differences in how constraints are taken into account, the end result of this

inference procedure is the same—we infer an optimal path distribution P ∗
0 [x1:T , u1:T ]. And,

as before, we still require a means of choosing control actions such that the underlying

process satisfies the statistics specified by P ∗
0 . However, since we cannot directly choose

control actions to maximize the likelihood of desirable behaviors, we will instead optimize

agent policies such that the statistics of agent trajectories match the statistics of a desired

path distribution. We can pose an optimization that achieves this from the perspective

of KL-control [36]. First, recall that for a given discounted MDP (X ,U , p, r, γ) over

T = {1, · · · , T} an agent’s path distribution takes the form,

(2.80) Pπ[x1:T , u1:T ] =
T−1∏
t=1

p(xt+1|xt, ut)π(ut|xt).
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Then, given some P ∗
0 whose statistics we want our agent to match, we may frame a policy

optimization problem as follows

(2.81) argmin
π

DKL(Pπ[x1:T , u1:T ]||P ∗
0 [x1:T , u1:T ]),

whose solutions may drastically vary as a function of our choice of priors P0.

While this KL-control procedure may seem idiosyncratic, in what follows of this

section we will illustrate how it can connect more broadly to stochastic optimal con-

trol, as well as well-known reinforcement learning techniques. To begin to see this, let

P ∗
0 [x1:T , u1:T ] =

∏T−1
t=1 p(xt+1|xt, ut)π(ut|xt)eγ

tr(xt,ut) be the target distribution in our opti-

mization in Eq. 2.81. By placing the agent’s policy and state transition model directly

into the target distribution, we ask the optimization to seek policies that preserve the

underlying structure of the system’s path statistics. Instead, the optimization will seek

policies that steer the system’s predetermined path structure towards highly rewarding

regions, as desired. To see this more clearly, we may use P ∗
0 in Eq. 2.81 and rearrange:

DKL(Pπ[x1:T , u1:T ]||P ∗
0 [x1:T , u1:T ]) = EPπ

[
log

Pπ[x1:T , u1:T ]

P ∗
0 [x1:T , u1:T ]

]

= EPπ

[
log

∏T−1
t=1 p(xt+1|xt, ut)π(ut|xt)∏T−1

t=1 p(xt+1|xt, ut)π(ut|xt)eγtr(xt,ut)

]

= EPπ

[
−

T−1∑
t=1

γtr(xt, ut)

]
.
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Once we change the sign of this expression and reformulate the problem as a maximization,

we have the following objective

(2.82) argmax
π

EPπ

[
T−1∑
t=1

γtr(xt, ut)

]
,

which we note is the standard form of stochastic optimal control problems, providing an

important link between robot thermodynamics and the control-as-inference literature [36].

Moreover, because RL problems are typically framed in the formalism of stochastic optimal

control, we also have the ability to frame RL in terms of the robot thermodynamics

formalism, which we will explore in what remains of this subsection, as well as throughout

this thesis.

Before we conclude this section, we will consider one additional choice of prior as an

example. Let P ∗
0 [x1:T , u1:T ] =

∏T−1
t=1 p(xt+1|xt, ut)πuniformer(xt,ut) in Eq. 2.81, noting that

we set γ = 1 for convenience but without lack of generality. Hence, our optimization will

seek goal-directed policies that preserve the underlying structure of the system’s state

transition dynamics while also seeking to match the statistics of a uniformly random policy.

In other words, our optimization will seek to maximize policy entropy. Plugging P ∗
0 into

Eq. 2.81 we see the following:

DKL(Pπ[x1:T , u1:T ]||P ∗
0 [x1:T , u1:T ]) = EPπ

[
log

∏T−1
t=1 p(xt+1|xt, ut)π(ut|xt)∏T−1

t=1 p(xt+1|xt, ut)πuniformer(xt,ut)

]

= EPπ

[
T−1∑
t=1

log
π(ut|xt)
πuniform

− r(xt, ut)

]

= EPπ

[
T−1∑
t=1

log π(ut|xt)− r(xt, ut) + const

]
.
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Disregarding the constant term and flipping the sign once again, we arrive at the following

optimization objective:

(2.83) argmax
π

EPπ

[
T−1∑
t=1

r(xt, ut)− log π(ut|xt)

]
.

Noting that the expectation of the logarithm of the policy is an entropy term, we may

also rewrite this objective as

(2.84) argmax
π

EPπ

[
T−1∑
t=1

r(xt, ut) + αS[π(·|xt)]

]
,

where we introduced α > 0 as a parameter. As expected, we have arrived at a policy

optimization that maximizes policy entropy while optimizing agent rewards. Importantly,

we recognize this objective as maximum entropy reinforcement learning (MaxEnt RL)

objective [18, 19, 41, 42], which constitutes a major family of state-of-the-art algorithms

in RL that seeks to improve exploration during learning by maximizing policy entropy.

Thus, using robot thermodynamics we were once again able to reproduce canonical results

in stochastic optimal control and RL—namely, the KL-control and stochastic optimal

control duality, as well as the derivation of maximum entropy methods in RL. We were

able to do this with remarkable ease by simply incorporating constraints as priors during

our maximum caliber inference procedure. In the final section of this chapter, we will

combine this same procedure with all of the technical machinery we have been building

up throughout this chapter in order to derive a novel RL framework built with embodied

agents in mind.
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2.6. The Maximum Diffusion Reinforcement Learning Framework

In what remains of this chapter, we will use the tools we developed in previous sections

to derive a novel approach to embodied learning and decision-making. Throughout this

thesis, we are interested in examining the role that embodiment plays in the resulting

behavior and performance of autonomous systems. As we alluded to in Ch. 2.3.1, for an

agent to be embodied is for them to be localized in space and time, requiring them to take

continuous paths through space and time. Then, as we saw in Ch. 2.3.2, when an agent is

required to take continuous paths through state-space their experiences become correlated,

leading to violations of the i.i.d. property, which creates major issues for any learning

process relying on these experiences as data. In Chs. 2.3.4 and 2.5.1, we found a solution

to this issue: Violations of the i.i.d. property can be avoided when the underlying agent is

maximally diffusive—or, ergodic, more generally. As before, many results in this section

are drawn from the supplement of [7].

2.6.1. Deriving the MaxDiff RL Objective

Much like how the MaxEnt RL framework seeks to encourage better exploration through

policy entropy maximization, in this section we are interested in deriving an exploration

strategy for embodied RL agents capable of overcoming violations of the i.i.d. property.

To this end, we will return to the KL-control-based optimization framework discussed in

the previous section. In particular, we consider the following objective,

(2.85) argmin
π

DKL(Pπ[x1:T , u1:T ]||P ∗
max[x1:T , u1:T ]),
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where P ∗
max[x1:T , u1:T ] =

∏T−1
t=1 pmax(xt+1|xt)πuniformer(xt,ut) or, equivalently, we have

P ∗
max[x1:T , u1:T ] =

∏T−1
t=1 pmax(xt+1|xt)er(xt,ut). Thus, our policy optimization will seek

to find a goal-directed policy that forces the system’s dynamics to match maximally

diffusive state transition statistics while also maximizing the underlying policy’s entropy.

Proceeding from Eq. 2.85 we have

DKL(Pπ[x1:T , u1:T ]||P ∗
max[x1:T , u1:T ]) = EPπ

[
log

∏T−1
t=1 p(xt+1|xt, ut)π(ut|xt)∏T−1
t=1 pmax(xt+1|xt)er(xt,ut)

]

= EPπ

[
T−1∑
t=1

log
p(xt+1|xt, ut)π(ut|xt)

pmax(xt+1|xt)
− r(xt, ut)

]
,

which we can rearrange into the following optimization problem

(2.86) argmax
π

EPπ

[
T−1∑
t=1

r(xt, ut) + α log
p(xt+1|xt, ut)π(ut|xt)

pmax(xt+1|xt)

]
,

where we introduced α > 0 as a temperature-like parameter to balance between the drive

to optimize rewards and the drive to match maximally diffusive trajectory statistics. As

currently expressed in terms of state-transitions models and policies, we refer to Eq. 2.86

as the MaxDiff RL objective. As we will see in Ch. 5, MaxDiff RL is a novel reinforcement

learning framework that resolves issues with the i.i.d. property and can provide formal

guarantees on the behavior and performance of embodied RL agents. For now, we only

mean to motivate its derivation from the principles of robot thermodynamics we have laid

out in this chapter.
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2.6.2. Deriving the MaxDiff Trajectory Synthesis Objective

Before concluding, we will derive an alternative form of the objective in Eq. 2.86 that

is more amenable to applications outside of RL, such as trajectory optimization and

sampling-based control. Instead of using the KL-control approach shown above, we can

make use of the fact that in Ch. 2.3.4 we proved that Pmax[x(t)] is the unique probability

distribution that optimizes S[P [x(t)]] under a path continuity constraint. For convenience,

we will ignore cost or reward functions in this derivation. We note we can do this without

loss of generality because we also proved analogous results in Ch. 2.5.1 for optimizations

in the presence of potentials, costs, and rewards as long as these functions satisfy some

assumptions. Given

(2.87) u∗(t) = argmax
u(t)

S[Pu(t)[x(t)]],

we know that S[Pmax[x(t)]] ≥ S[Pu(t)[x(t)]] in general, with S[Pmax[x(t)]] = S[Pu∗(t)[x(t)]]

if and only if Pmax[x(t)] = Pu∗(t)[x(t)] and attaining the global optimum is feasible. Thus,

since there is no path distribution with greater entropy we may use control to directly

maximize the entropy of our embodied agent’s path distribution, and—if we succeed—to

realize maximally diffusive state transition statistics.

With this in mind, in order to proceed further we will make an optimistic assumption:

Assume that the underlying agent’s path statistics are within a local variational neighbor-

hood of the optimal path statistics. We can formalize this assumption by asserting that

our agent’s path probability densities are of the following functional form:

(2.88) PL
u(t)[x(t)] =

1

Z
exp

[
− 1

2

∫ t

t0

ẋ(τ)T Ĉ−1
u(t)[x(τ)]ẋ(τ)dτ

]
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where it is still the case that S[Pmax[x(t)]] ≥ S[PL
u(t)[x(t)]], and that the optimum can

only be reached if and only if we can find u∗(t) such that Pmax[x(t)] = PL
u∗(t)[x(t)]. In

other words, since there is no path distribution with greater entropy than Pmax[x(t)], and

because PL
u(t)[x(t)] matches its functional form, we may optimize

(2.89) argmax
u(t)

S[PL
u(t)[x(t)]],

instead and reach find the same optimum as Eq. 2.87. The matrix Ĉu(t)[x
∗] is an empirical

estimate of the local temporal correlations (as we defined them in Ch. 2.3.2). Importantly,

the optimum of the optimization is reached if and only if C[x∗] = Ĉu(t)[x
∗] for all x∗ ∈ X .

Computing Ĉu(t)[x
∗] is simple: Using u(t), we forward simulate short rollouts of the system

initialized at x∗ and evaluate their covariance across system trajectories. Alternatively, if

we do not have access to predictive system rollouts we may evaluate the covariance along

an individual trajectory. However, this is only equivalent to the previous procedure if the

underlying dynamics are ergodic. Thus, by optimizing S[PL
u(t)[x(t)]], we merely change the

direction from which our system approaches the same variational optimum.

Why go through this trouble? Because we can find an analytical expression for

S[PL
u(t)[x(t)]] that is concave and can be efficiently optimized. To do so, we will discretize

our trajectory distribution into PL
u1:T

[x1:T ] and make use of the chain rule of conditional

entropies, which is

(2.90) S[P [x1:T ]] =
T−1∑
t=1

S[p(xt+1|x1:t)]
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in general. However, when the process is Markovian the right hand side of the expression

simplifies significantly. Then, applying this rule to PL
u1:T

[x1:T ] we have,

(2.91) S[PL
u1:T

[x1:T ]] =
T−1∑
t=1

S[pLut:T (xt+1|xt)] ∝
T−1∑
t=1

1

2
log det Ĉut:T [xt],

where we made use of the Markov property to simplify our sum over conditional entropies,

and then the analytical form of the entropy of a Gaussian distribution (up to a constant

offset) to reach our final expression.

Equipped with this result in hand, we may now rewrite the MaxDiff RL objective as

(2.92) argmax
π

EPπ

[
T−1∑
t=1

r(xt, ut) +
α

2
log det Ĉπ[xt]

]
,

where we used Ĉπ[xt] instead because of our use of a policy instead of a controller.

Nonetheless, Ĉπ[xt] is computed in the same way as before for a given policy. Equivalently,

we may write this objective as an optimal control problems in terms of cost functions,

(2.93) argmin
u(t)

∫ t

t0

l(x(τ), u(τ))− α

2
log det Ĉu(τ)[x(τ)]dτ.

We refer to both of these objectives as the MaxDiff Trajectory Synthesis objectives.

2.6.3. Examples of MaxDiff Trajectory Synthesis

In what remains of this section, we implement MaxDiff trajectory synthesis across handful

of applications outside of reinforcement learning that require both directed and undirected

exploration. This is because reinforcement learning will be discussed at length in Ch. 5.

These examples should illustrate the sense in which maximally diffusive trajectories can
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Figure 2.5. Maximally diffusive trajectories of a spring-loaded in-
verted pendulum (SLIP). (A) The SLIP model (left panel) is a 9-
dimensional nonlinear and nonsmooth second-order dynamical system, which
is used as a popular model of human locomotion. (right panel) We choose
this system because it is far from the ideal assumptions under which our
theory is formulated, and yet its sample paths behave as we expect. The
sample paths of the SLIP model with MaxDiff trajectories in the one di-
mensional space determined by its x-coordinate approximately match the
statistics of pure Brownian motion in one dimension. (B) Mean squared
displacement (MSD) plots give the deviation of the position of an agent over
time with respect to a reference position. We can distinguish between diffu-
sion processes by comparing the growth of their MSD over time. In general,
we expect them to follow a relationship described by MSD(x) ∝ tγ, where
γ is an exponent that determines the different diffusion regimes (normal
diffusion γ = 1, superdiffusion 1 < γ < 2, ballistic motion γ ≥ 2). As we
can see, the behavior of the diffusing SLIP model is superdiffusive at short
time-scales, but gradually becomes more like a standard diffusion process
as we coarse-grain. Similar short-delay superdiffusion regimes have been
observed in systems with nontrivial inertial properties [43], such as those of
our macroscopic SLIP agent.

be useful across problem settings in robotics. Moreover, here we will analyze the behavior

of various dynamical systems made to follow maximally diffusive trajectories through the

lens of statistical mechanics.

We begin by studying MaxDiff trajectory synthesis in the undirected exploration of a

nontrivial control system—a spring-loaded inverted pendulum (SLIP) model. The SLIP

model is a popular dynamic model of locomotion and encodes many important properties
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of human locomotion [44]. In particular, we will implement the SLIP model as in [45],

where it is described as a 9-dimensional nonlinear nonsmooth control system. The SLIP

model is shown in Fig. 2.5(A) and consists of a “head” which carries its mass, and a “toe”

which makes contact with the ground. Its state-space is defined by the 3D velocities and

positions of its head and toe, or x = [xh, ẋh, yh, ẏh, zh, żh, xt, yt, q]
T , where q = {c, a} is a

variable that tracks whether the system is in contact with the ground or in the air. The

SLIP dynamics are the following:

ẋ = f(x, u) =


fc(x, u), if lc < l0

fa(x, u), otherwise

,

fc(x, u) =



ẋh

(k(l0−ls)+uc)(xh−xt)
mlc

ẏh

(k(l0−lc)+uc)(yh−yt)
mlc

żh

(k(l0−lc)+uc)(zh−zt)
mlc

− g

0

0



, fa(x, u) =



ẋh

0

ẏh

0

żh

−g

ẋh + utx

ẏh + uty



,(2.94)

where fc(x, u) captures the SLIP dynamics during contact with the ground, and fa(x, u)

captures them while in the air. During contact the SLIP can only exert a force, uc, by

pushing along the axis of the spring, whose resting length is l0 and its stiffness is k. During

flight the SLIP is subject to gravity, g, and is capable of moving the x, y-position of its

toe by applying utx and uty , respectively. To finish specifying the SLIP dynamics, and
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determine whether or not the spring is in contact with the ground, we define,

lc =
√
(xh − xt)2 + (yh − yt)2 + (zh − zG)2,

which describes the distance along the length of the spring to the ground, and zG is

the ground height. Rather than explore diffusively in the entirety of the SLIP model’s

9-dimensional state-space, we will first only try to explore the 1-dimensional subspace

described by its x-coordinate, starting from an initial condition of x(0) = 0. We can think

of this as a projection to a 1-dimensional subspace of the system, or equivalently as a

coordinate transformation with a constant Jacobian matrix. In general, we may define our

covariance matrices in terms of other coordinates as C[y∗] = Jψ[x
∗]C[x∗]Jψ[x

∗]T , where

Jψ[·] is the Jacobian matrix corresponding to the coordinate transformation y∗ = ψ(x∗).

We note that the system’s nonsmoothness should break the path continuity constraint

that our approach presumes to hold. However, since we use a coordinate transformation to

formulate the exploration problem in terms of the system’s x-coordinate we do not violate

the assumptions of MaxDiff trajectory synthesis. This is because, while the system’s

velocities experience discontinuities, its position coordinates do not. In general, the use of

coordinate transformations can extend the applicability of MaxDiff trajectory synthesis to

even broader classes of systems. Formalizing this, however, would require a formal analysis

of observability, which is outside the scope of this thesis.

In order to practically implement MaxDiff trajectory synthesis across the following

examples, we make use of Model-Predictive Path Integral Control (MPPI) [46] in conjunc-

tion with the objective in Eq. 2.93. Figure 2.5(A) depicts the sample paths generated by

the maximally diffusive exploration of the SLIP model’s x-coordinate. The sample paths
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of the SLIP agent resemble the empirical statistics of Brownian particle paths despite the

fact that the SLIP model is far from a non-inertial point mass. In Fig. 2.5(B), we study

the fluctuations of maximally diffusive exploration from the lens of statistical mechanics.

Here, we analyze the mean squared displacement (MSD) statistics of undirected maximally

diffusive exploration and compare to the statistics of standard and anomalous diffusion

processes. MSD plots capture the deviations of a diffusing agent from some reference

position over time. In standard diffusion processes, the relationship between MSD and time

elapsed is linear on average. That is, we expect the squared deviation of a diffusing agent

from its initial condition to grow linearly in proportion to the time elapsed (see blue line in

Fig. 2.5(B)). However, in general there exist other diffusion regimes characterized by the

growth of MSD over time. These regimes are typically determined by fitting the exponent

γ in MSD(x) ∝ tγ, where normal diffusion has γ = 1, superdiffusion has 1 < γ < 2, and

ballistic motion has γ ≥ 2. The purple line in Fig. 2.5(B) depicts the MSD statistics of the

SLIP model. The diffusion generated by the SLIP model’s maximally diffusive exploration

has superdiffusive displacements over short-time scales owing to the the inertial properties

of the system. However, as we consider longer time-scales, the behavior of the SLIP model

becomes indistinguishable from standard diffusion processes with γ = 1. This difference

in scaling exponents has been shown to be a general property of diffusion with inertial

particles and should be expected in macroscopic systems [43].

Keeping with the SLIP dynamical system, in Fig. 2.6 we study the behavior of MaxDiff

trajectory synthesis across various standard robotics applications. In Fig. 2.6(A), a single

SLIP agent is performing undirected MaxDiff exploration within the bounds of anN-shaped

environment. In this task, the agent must be able to explore its x-y plane by hopping
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Figure 2.6. SLIP maximally diffusive exploration in various settings.
(A) Undirected maximally diffusive exploration in a constrained N-shaped
environment. The boundaries of the environment, as well as safety con-
straints, are established through the use of control barrier functions, which
enable safe and continuous maximally diffusive exploration without modi-
fications to our approach. (B) Undirected multiagent maximally diffusive
exploration of more complex environment: a house’s floor plan. Here, five
agents with identical objectives perform maximally diffusive exploration.
Because maximally diffusive exploration is ergodic, many tasks are inherently
distributable between agents with linear scaling in complexity. (C) Directed
maximally diffusive exploration in a complex environment. Here, a single
agent in a complex environment performs directed exploration in a potential
that encodes a navigation goal.

along, without falling or exiting the bounds of the exploration domain. To ensure the SLIP

model’s safety, as well as establish the bounds of the environment, we made use of control

barrier functions (CBFs) [47]—a standard technique in the field for guaranteeing safety.

Then, to illustrate another application application of the ergodicity guarantees of our

method, in Fig. 2.6(B) we apply MaxDiff trajectory synthesis to multiagent exploration in

a complex environment—a house floor plan—in conjunction with CBFs. Since maximally

diffusive exploration is ergodic, the outcomes of a multiagent execution and a single

agent execution are asymptotically identical. In this way, distributed maximally diffusive



105

Figure 2.7. Directed maximally diffusive exploration of bimodal
potential across systems. (left panel) The single integrator is a linear
system whose velocities are directly determined by the controller. Hence,
its sample paths behave exactly as free Brownian particles in a potential.
(middle panel) The double integrator is the second-order equivalent of the
single integrator system. In this system, the controller inputs acceleration
commands that the system then integrates subject to its inertial proper-
ties. Despite being an inertial system, its interactions with the potential
approximately follow the behavior of a Brownian particle in a potential.
(right panel) The differential drive vehicle is a car-like system with simple
nonlinear and nonholonomic dynamics with more complex controllability
properties. Nonetheless, when we subject the differential drive vehicle to
directed maximally diffusive exploration it traverses the potential as desired.

exploration only incurs a linear scaling in computational complexity as a function of the

number of agents. Finally, in Fig. 2.6(C) we return to the single agent case to illustrate

directed maximally diffusive exploration in the same complex environment as before. Here,

a potential function encoding a goal destination is flat beyond a certain distance, which

leads to undirected exploration initially. However, as the agent nears the goal, it can

detect variations in the potential and follows its gradients diffusively towards the goal.

Now, we will highlight how the underlying properties of an agent’s dynamics can affect

the trajectories generated during maximally diffusive exploration. To this end, we consider

a simple planar exploration task subject to a bimodal Gaussian potential ascribing a cost
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Figure 2.8. Varying the α parameter of directed MaxDiff exploration.
Here, we are making a differential drive vehicle explore a quadratic potential
centered at the origin under varying choices of α modulating the strength of
the diffusive exploration within the potential. As we increase α the strength
of the diffusion increases as well, leading to greater exploration of the basin
of attraction of the quadratic potential well.

to system states far away from the distribution means. In Fig. 2.7, we explore the planar

domain with three different systems. First, exploration over the bimodal potential is

shown with a single integrator system, which is a controllable first-order linear system.

Since this system is effectively identical to a non-inertial point mass, its sample paths are

formally the same as those of Brownian particles in a confining potential. In the middle

panel of Fig. 2.7, we consider a double integrator system, which is a controllable, linear,

second-order system. However, for this system its diffusion tensor is degenerate because

the noise only comes into the system as accelerations. Nonetheless, the system realizes

ergodic coverage with respect to the underlying potential (in agreement with the theory of

degenerate diffusion [48, 49]). Finally, we consider the differential drive vehicle, which is a

simple first-order nonlinear dynamical system with nontrivial controllability properties.

Yet, the differential drive vehicle realizes ergodic coverage in the plane, as predicted by

the properties of maximally diffusive systems.

As a final look into the properties of directed maximally diffusive exploration, we

examine the role that the temperature parameter α plays on the behavior of the agent
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in a simpler setting. To this end, we revisit the differential drive vehicle dynamics and

make use of MPPI once again to optimize our objective. However, instead of a bimodal

Gaussian potential, we consider a quadratic potential centered at the origin with the

system initialized at (x, y) = (−4,−2). Quadratic potentials such as these are routinely

implemented as cost functions throughout robotics and control theory. In Fig. 2.8, we

depict the behavior of the system as a function of the temperature parameter. Initially,

with the temperature set to zero the agent’s paths are solely determined by the solution

to the optimal control problem, smoothly driving towards the potential’s minimum at

the origin. Then, as we tune up α, we increase diffusivity of our agent’s sample paths.

While at α = 1 the position of the system fluctuates very slightly at the bottom of the

quadratic potential, at α = 100 the agent diffuses around violently by overcoming its

energetic tendency to stay at the bottom of the well. If we were to continue increasing α

to larger and larger values, we would observe that directed maximally diffusive exploration

would cease to be ergodic, as predicted by [39]. This occurs as a result of the strength of

diffusive fluctuations (here set by our α parameter) dominating the magnitude of the drift

induced by the potential’s gradient. This is to say that for a given problem, system, and

operator preferences, there should be a range of α values that best achieve the task.

Throughout this chapter, we have sought to lay down the foundations of robot thermo-

dynamics as a general decision-making framework grounded in the statistical mechanics of

complex embodied systems. As we discussed, robot thermodynamics is concerned with

two questions: “What is the structure of an optimal agent’s dynamics?” and “How can

such dynamics be realized?” Across the many sections of this chapter, we formalized our

approach to answering these questions. In short, we developed inference procedures for
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answering the former of these questions, as well as control and policy synthesis procedures

to answer the latter. The result is a flexible set of tools for inferring and specifying

goal-directed behavior. In the following chapters, we will explore applications of the

mathematical foundations we have laid down in a broad range of applications such as

nonequilibrium statistical mechanics (in Ch. 3), microsystem design (in Ch. 4), and robot

learning (in Ch. 5). These applications will highlight the capabilities of our framework in

modelling, designing, controlling, and learning with embodied autonomous systems.
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CHAPTER 3

Predicting Self-Organization in Active and Robotic Matter

In Ch. 2.3, we asked ourselves: If all we knew about a complex system is that they explore

their configurations in continuous paths, then what would be our best guess as to their

dynamics? Our exploration of this question led to a principle for predicting the steady-state

occupancy statistics of a class of “sufficiently messy” stochastic processes in Ch. 2.4. In

this chapter, we will investigate this principle from the perspective of nonequilibrium

statistical mechanics. In other words, as a physical mechanism and explanation for many

far-from-equilibrium self-organization phenomena in nature. Most of the work presented

in this chapter was previously published in [6]. We note that the contributions of this

thesis to that work include (but are not limited to): Developing the experimental platform,

performing experimental validations and data analyses, and deriving control techniques to

manipulate and engineer nonequilibrium steady-states.

Self-organization is frequently observed in active nonequilibrium collectives, from ant

rafts to molecular motor assemblies and beyond. However, general principles describing

self-organization in far-from-equilibrium settings have been challenging to identify. Here,

we will offer a unifying perspective that views the behavior of complex systems as largely

random—except for their configuration-dependent responses to external perturbations.

Taking this perspective enables the derivation of a nonequilibrium Boltzmann-like principle

(as in Ch. 2.4), which allows one to understand, predict, and manipulate nonequilibrium

self-organization in a broad class of complex systems. Throughout this chapter, we validate
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our predictions experimentally in a shape-changing robot collective capable of emulating

the diverse properties of active matter systems across engineered and natural settings.

Additionally, we outline multiple methodologies for steering and controlling nonequilibrium

collective behavior based on these principles. Our findings highlight how emergent order

depends sensitively on the matching between external patterns of forcing and internal

dynamical response properties, pointing towards future approaches for design and control

of collectives of autonomous agents and active particle collectives, as we will go on to show

in Ch. 4.

3.1. Introduction

Self-organization in nature is surprising because getting a large group of separate

particles to act in an organized way is often difficult. By definition, arrangements of matter

we call “orderly” are special, making up a tiny minority of all allowed configurations.

For example, we find each unique, symmetrical shape of a snowflake visually striking, in

contrast with any randomly-rearranged clump of the same water molecules. Thus, any

theory of emergent order in many-particle collectives must explain how a small subset of

configurations are spontaneously selected among the vast set of disorganized arrangements.

Spontaneous many-body order is well-understood in thermal equilibrium cases such

as crystalline solids or DNA origami [50], where the assembling matter is allowed to

sit unperturbed for a long time at constant temperature T . The statistical mechanical

approach proceeds by approximating the complex deterministic dynamics of the particles

with a probabilistic “molecular chaos,” positing that the law of conservation of energy

governs otherwise random behavior [51]. What follows is the Boltzmann distribution
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for the steady-state probabilities, pss(q) ∝ exp[−E(q)/T ], which shows that the degree

to which special configurations q of low energy E(q) have a high probability pss(q) in

the long-term depends on the amplitude of the thermal noise. Orderly configurations

can assemble and remain stable, so long as inter-particle attractions are strong enough

to overcome the randomizing effects of thermal fluctuations. For the remainder of this

chapter, we use q instead of x to denote the state of the underlying physical stochastic

process to align with field norms.

However, there are also many examples of emergent order outside of thermal equi-

librium. From “random organization” in sheared colloids [52], to phase separation in

multi-temperature particle mixtures [53], and dynamic vortices in protein filaments [54], a

variety of ordered behaviors arise far from equilibrium that cannot be explained in terms

of simple inter-particle attraction or energy gradients [55–58].

In all of these examples, the energy flux from external sources allows different system

configurations to experience fluctuations of different magnitude [59, 60]. We suggest that

the emergence of such configuration-dependent fluctuations, which cannot happen in equilib-

rium, may be key to understanding many nonequilibrium self-organization phenomena. In

particular, we introduce a measure of driving-induced random fluctuations, which we term

“rattling” R(q), and argue that it could play a similar role in many far-from-equilibrium

systems as energy does in equilibrium. For a derivation of this quantity in the context of

stochastic processes, we refer readers to Ch. 2.4.

We test our claim in a number of systems, including a flexible active matter sys-

tem of simple robots we call “smarticles” (smart active particles) [8] as a convenient
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test-platform (see movie S11) inspired by similar robo-physical emulators of collective

behavior [61–63]. Despite their purely repulsive inter-robot interactions, we find that smar-

ticles spontaneously self-organize into collective “dances,” whose shape and motions are

matched to the temporal pattern of external driving forces (see movies S22 and S33). This

platform and others [64–66], including the nonequilibrium ordering examples mentioned

above, all exhibit low-rattling ordered behaviors that echo low-energy structures emergent

at equilibrium. We thus motivate and test a predictive theory based on rattling that may

explain a broad class of nonequilibrium ordering phenomena.

3.2. Results

3.2.1. Rattling Theory

In devising our approach, we take inspiration from the phenomenon of thermophoresis,

which is the simplest example of purely nonequilibrium self-organization, and is char-

acterized by the diffusion of colloidal particles from hot regions to cold regions [67]. If

non-interacting particles in a viscous fluid are subject to a temperature T (q) that varies

over position q, their resulting density in the steady-state pss(q) will concentrate in the

regions of low temperature. Particles diffuse to regions where thermal noise is weaker

and become trapped there. With the diffusivity landscape set by thermal noise locally

according to the fluctuation-dissipation relation D(q) ∝ T (q) [68], the steady-state diffu-

sion equation ∇2 (D(q)pss(q)) = 0 is satisfied by the probability density pss(q) ∝ 1/D(q).

Hence, a low-entropy, “ordered” arrangement of particles can be stable when the diffusivity

1https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s1.mp4
2https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s2.mp4
3https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s3.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s1.mp4
https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s2.mp4
https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s3.mp4
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landscape has a few locations q that are strongly selected by their extremely low D(q)

values.

We seek to extend this intuition to explain nonequilibrium self-organization more

broadly. However, a straightforward mathematical extension of the idea encounters

challenges in only slightly more complicated scenarios. For an arbitrary diffusion tensor

landscape D(q), in which diffusivity can depend on the direction of motion, one can no

longer find general solutions for the steady-state. Moreover, the steady-state density pss(q)

at configuration q may depend on the diffusivity D(q̃) at arbitrarily distant configurations q̃.

Nonetheless, we suggest that for most typical diffusion landscapes, the local magnitude of

fluctuations |D(q)| should statistically bias pss(q), and hence be approximately predictive

of it. This insight, which is central to our theory, is illustrated to hold numerically in

Fig. 3.1(A) for a randomly constructed two-dimensional anisotropic landscape.

The key assumption underlying our approach is that the complex system dynamics

are so messy that only the amplitude of local drive-induced fluctuations governs the

otherwise random behavior—an assumption inspired by molecular chaos at equilibrium,

and motivated mathematically in Ch. 2.4. We expect this to apply when the system

dynamics are so complex, nonlinear, and high-dimensional that no global symmetry or

constraint can be found for its simplification. Although one cannot predict a configuration’s

nonequilibrium steady-state probability from its local properties in the general case [69, 70],

the feat becomes achievable in practice for “messy” systems. To illustrate how local drive-

induced fluctuations may be predictive of steady-state occupancy in complex dynamical

systems, here we consider a discrete dynamical system with random transition rates

between a large number of states. In this context, it has been shown analytically that the
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Figure 3.1. Rattling R is predictive of steady-state occupancy across
far-from-equilibrium systems. (A) shows inhomogeneous anisotropic
diffusion in 2D, where the steady-state density pss(q) is seen to be approx-
imately given by the magnitude of local fluctuations log |D(q)| ∝ R(q)
(|D|—determinant of the diffusion tensor). (B) shows a random walk on a
large random graph (1000 states), where Pss—the probability at a state—is
approximately given by E—that state’s exit rate. (C) shows an active matter
system of shape-changing agents: an enclosed ensemble of 15 “smarticles”
in simulation. (D) realizes similar agents experimentally with an enclosed
three-robot smarticle ensemble. The middle row shows that relaxation to the
steady-state of a uniform initial distribution is accompanied by monotonic
decay in the average rattling value in all cases—analogous to free energy
in equilibrium systems. The bottom row shows the validity of the nonequi-
librium Boltzmann-like principle in Eq. 3.3, where the black lines in (A,
B, and C) illustrate the theoretical correlation slope for a sufficiently large
and complex system (see supplementary materials). The mesoscopic regime
in (D) provides the most stringent test of rattling theory (where we observe
deviations in γ from 1), while also exhibiting global self-organization. In (A
and B, middle) time units are arbitrary, and for (C and D, middle) time is
in seconds, where the drive period is 2 s.
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net rate at which we exit any given state predicts its long-term probability approximately in

most settings, even though the exact result requires global system knowledge in general(see

Fig. 3.1(B)) [71, 72]. This result may be related to the above discussion of thermophoresis

by noting that the discrete state exit rates are determined by the continuum diffusivity if

our dynamics are built by discretizing the domain of a diffusion process.

To formulate our random dynamics assumption explicitly, we represent the complex

system evolution as a trajectory in time q(t), where the configuration vector q captures

the properties of the entire many-particle system. Our messiness assumption amounts to

approximating the full complex dynamics between two points q(t) and q(t+δt) by a random

diffusion process. To this end, we take the amplitude of the noise fluctuations D(q) to

locally reflect the amplitude of the true configuration dynamics: |q(t+δt)−q(t)|2 ∝ D(q)δt

for short rollouts q(t→ t+δt) (i.e., samples of system trajectories) of duration δt initialized

in configuration q(t) = q. Through this approximation, our dynamics are effectively reduced

to diffusion in q-space, which then allows us to locally estimate the steady-state probability

of system configurations from D(q) as in thermophoresis. Hence, the global steady-state

distribution may be predicted from the properties of short-time, local system rollouts.

For rare orderly configurations to be strongly selected in a messy dynamical system, the

landscape of local fluctuations must vary in magnitude over a large range of values. While

in thermophoresis these fluctuations are directly imposed by an external temperature

profile, in driven dynamical systems the effect results from the way a given pattern of

driving can affect system configurations differently. The D(q) landscape is emergent from

the interplay between the pattern of driving, and the library of possible q-dependent system

response properties. In practice, we observe that the amplitudes of system responses
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to driving do often vary over several orders of magnitude (see Fig. 3.1). We see this

phenomenology in many well-known examples of active matter self-organization [52, 60,

73]. For example, the crystals that form in suspensions of self-propelled colloids in [74]

may be seen as the collective configurations that respond least diffusively to driving by

precisely balancing the propulsive forces among individual particles. This illustrates how

the low D(q) configurations are selected in the steady-state by an exceptional matching of

their response properties to the way the system is driven.

We apply these ideas in real complex driven systems whose response to driving we

cannot predict analytically, such as our robotic swarm of smarticles. In this case, we

require an estimator for the local value of D(q∗) based on observations of short rollouts

of system behavior when initialized at some configuration q∗. The estimator of the local

diffusion tensor that we choose here is the covariance matrix [31]:

(3.1) C[q∗] = Cov[ṽq∗ , ṽq∗ ]

where ṽq∗ is seen as a random variable with samples drawn from {(q(t)− q(0))/
√
t}q(0)=q∗

at various time-points t along one or several short system trajectories q(t) rolled out from

q(0) = q∗. We assume these rollouts q(t) to be long enough to capture fluctuations in the

configuration variables under the influence of a drive, but short enough to have q(t) stay

near q∗. We note that this is closely related to our discussion of the relative contributions

of paths of different lengths to the steady-state occupancy statistics of a system in Ch. 2.4.

While the covariance matrix reflects the amplitude of local fluctuations, in estimating

effective diffusivity we are instead interested in a measure of their disorder. This follows

from the observation that high-amplitude ordered oscillations do not contribute to the rate
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of stochastic diffusion [59]. We suggest that the degree of disorder of fluctuations may be

captured by the entropy of the distribution of ṽq∗ vectors, which is how we define “rattling”

R(q∗). Physically, vectors ṽq∗ capture the statistics of the force fluctuations experienced

in configuration q∗, and so rattling measures the disorder in the system’s driven response

properties at that point. By approximating the distribution of ṽq∗ as Gaussian, we can

express its entropy (up to a constant offset) simply in terms of C[q∗] as:

(3.2) R(q∗) =
1

2
log det C[q∗].

Separately, we note that this definition is consistent with our derivation in Ch. 2.4.

With this definition, we generalize the thermophoretic expression for the steady-state

density pss(q
∗) ∝ 1/D(q∗) and express it in a Boltzmann-like form:

(3.3) pss(q
∗) ∝ e−γR(q∗),

where γ is a system-specific constant of order 1. We note that when energy varies on the

same scale as rattling, the interaction between the two landscapes can generate strong

steady-state currents and may break this relation [59]. This way, using rattling we are able

predict the long-term global steady-state distribution based on empirical measurements of

short-term local system behavior, which suggests that probability density accumulates

over time in low-rattling configurations.

3.2.2. Smarticle Experiments

We study the collective behavior of a simple ensemble of smarticles, aligning ourselves within

the tradition of using robotic systems as flexible, physical emulators for self-organizing



118

natural systems [61–64]. Each smarticle (shown in Fig. 3.2(A)) is composed of three 5.2 cm

long links, with two hinges actuated by motors programmed to follow a driving pattern

specified by a micro-controller. When a smarticle sits on a flat surface, its arms do not

touch the ground, so an individual robot cannot move. However, a group of them can

achieve complex motion by pushing and pulling each other (see movie S14) [75]. The relative

coordinates of the middle link of each robot in the ensemble (x, y, θ) may be thought of as

the internal system configurations that dynamically respond to an externally-determined

driving force arising from the time-variation of arm angles (α1, α2).

This robotic active matter system offers substantial flexibility in choosing both the

programmed patterns of driving, and the properties of internal system dynamics, such

as friction coefficients, weights, etc. Additionally, the smarticle system has a flat poten-

tial energy landscape, allowing one to focus on the contributions of the drive-induced

fluctuations to the collective behavior, making our findings broadly applicable to other

strongly-driven systems. When the smarticles are within contact range (as ensured by

a confining ring, Fig. 3.2(C)), the forces experienced throughout the collective for a

given pattern of arm movement are an emergent function of all system coordinates. This

configuration-dependent forcing gives rise to varying rattling values, which we refer to as

the “rattling landscape,” and which we see to be a hallmark property in many far-from-

equilibrium examples. The rattling landscape then leads to some system configurations

being dynamically selected over others and allowing for self-organization, just as the

diffusivity landscape does in thermophoresis. Finally, the combined effects of impulsive

inter-robot collisions, nonlinear boundary interactions, and static friction lead to a large

4https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s1.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s1.mp4
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Figure 3.2. Self-organization in a smarticle robotic ensemble.
(A) Front, back and top view of a single smarticle. Of its five degrees
of freedom, we consider the time-varying arm angles (α1, α2) as “external”
driving, since these are controlled by a pre-programmed microcontroller,
while the robot coordinates (x, y, θ) are seen as “internal” system configu-
ration, since these respond interdependently to the arms. (B) An example
periodic arm motion pattern. (C) Top view of three smarticles confined in
a fixed ring, all programmed to synchronously execute the driving pattern
shown in (B). The video frames, aligned on the time-axis of (B), show one
example of dynamically ordered collective “dance” that can spontaneously
emerge under this drive. (D) Simulation video, showing agreement with
experiment in (C). We color-code simulated states periodically in time,
and overlay them for 3 periods to illustrate the dynamical order over time.
(E) shows the system’s configuration space, built from nonlinear functions
of the three robots’ body coordinates (x, y, θ). The steady-state distribu-
tion (blue) illustrates the few ordered configurations that are spontaneously
selected by the driving out of all accessible system states (orange).

degree of quasi-random motion [75], making this a promising candidate system for exploring

our theory.

Reasoning that our fundamental assumption of quasi-random configuration dynamics

would be most valid in systems with many degrees of freedom, we also built a simulation
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that would allow us to study the properties of larger smarticle groups and explore different

system parameters (see Fig. 3.3). In this regime, we used simulations to gather enough data

to sample the high-dimensional probability distributions for our analysis. In a simulation

of 15 smarticles, we observed the tendency of the ensemble to reduce average rattling over

time after a random initialization. For this 45-dimensional system (x, y, θ for 15 robots),

the configuration-space dynamics are well-approximated by diffusion, and so Eq. 3.3 holds,

which is also shown in Fig. 3.1(C). In addition, in these simulations we noted the emergence

of metastable pockets of local order when groups of 3-4 nearby smarticles self-organized

into regular motion patterns for several drive cycles (movie S25).

The transient appearance of dynamical order in subsets of smarticle collectives raises

the question of whether our rattling theory continues to hold for smaller ensembles. For the

remainder of the paper we focus on ensembles of three smarticles (as in Fig. 3.1(D)), which

allows for exhaustive sampling of configurations experimentally, and easier visualization

of the configuration space (as in Fig. 3.2(E)). Both in simulation and experiment, we

found that this regime exhibits a variety of low-rattling behaviors that manifest as distinct,

orderly collective “dances” (movie S36 and Fig. 3.2, (C) and (D)). Despite its small size,

this system is well-described by rattling theory, as evidenced by the empirical correlation

between rattling and the steady-state likelihood of configurations (see Fig. 3.1(D), bottom).

We consider self-organization as a consequence of a system’s landscape of rattling

values over configuration space. This rattling landscape is specific to the particular drive

forcing the system out of equilibrium, since different drives will generally produce different

dynamical responses in the same system configuration. When the three-smarticle ensemble

5https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s2.mp4
6https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s3.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s2.mp4
https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s3.mp4
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Figure 3.3. Rattling prediction is robust across system parameters.
(A) illustrates that for larger numbers of smarticles N , the correlations
between pss and R given by Eq. 3.3 persists in simulation. (B) similarly
shows robustness to varying arm-lengths A, shown in relative units (where
the middle link is of length 1).

is driven (under the pattern in Fig. 3.2(B)), the range of observed rattling values is so

large that the lowest-rattling configurations—and consequently highest likelihood—account

for most of the steady-state probability mass. Over 99% of probability accumulates in

these spontaneously selected configurations, which represent only 0.1% of all accessible

system states (Fig. 3.2(E)). Moreover, in these configurations the smarticles exhibit an

orderly response to driving (see movie S47, and Fig. 3.2, (C) and (D)). In practice, the

ensemble spends most of its time in or nearly in one of several distinct dances, with

7https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s4.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s4.mp4
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Figure 3.4. Self-organized behaviors are fine-tuned to drive pattern.
(A) and (B) show that changing the arm motion pattern slightly (top) affects
which configurations self-organize in the steady-state (bottom, same 3D
configuration space as in Fig. 3.1(E)). (C) By mixing drives A and B as
shown (top), we can isolate only those configurations selected in both the
steady-states (circled in purple). This is an analytical prediction of the
theory, and (D) further verifies its quantitative formulation.

occasional interruptions by stochastic flights from one such dynamical attractor to another

(movie S58).

From the above observations, we can begin to understand how self-organization emerges

in driven collectives. In equilibrium, order arises when its entropic cost is outweighed by

the available reduction of energy. Analogously, a sufficiently large reduction in rattling

can lead to dynamical organization in a driven system. Moreover, such a reduction can

require matching between the system dynamics and the drive pattern.

Through rattling theory we can predict how self-organized states are affected by changes

in the features of the drive. We expect the structure of the self-organized dynamical

8https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s5.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s5.mp4
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attractors to be specific to the driving pattern, as each drive induces its own rattling

landscape. To test this, we programmed the three smarticles with two distinct driving

patterns (Fig. 3.4, (A) and (B), top), which we ran separately. The two resulting steady-

state distributions, while each being highly localized to a few configurations, are largely

non-overlapping (Fig. 3.4, (A) and (B), bottom). This indicates that by tuning the drive

pattern, it may be possible to design the structure of the resulting steady-state, and hence

control the self-organized dynamics (see also [76–78]).

As a proof of principle for such control, we developed a methodology for selecting

particular steady-state behaviors by combining drives. By randomly switching back and

forth between drives A and B in Fig. 3.4, we define a compound drive A+B (Fig. 3.4(C)

and movie S69). We predicted that this drive would select only those configurations

common to both A and B steady-states (Fig. 3.4, (A) and (B), bottom), since having low

rattling under this mixed drive requires having low rattling under both constituent drives.

Our experiments confirmed this (Fig. 3.4(C)), and we were further able to quantitatively

predict the probability that a configuration would appear under the mixed drive based on

its likelihood in each constituent steady-state according to

(3.4) 1/pA+Bss ∝ 1/pAss + 1/pBss,

as shown in Fig. 3.4(D). This simple relationship suggests that by composing different

drives in time, one can single out desired configurations for the system steady-state, which

provides an essential operational primitive on the road towards more complex control

strategies for nonequilibrium collectives.

9https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s6.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s6.mp4
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Figure 3.5. Tuning self-organization by modulating drive random-
ness. Self-organization relies on the degree of predictability in its driving
forces, in a way that we can quantify and compute analytically. As the
drive becomes less predictable (left to right, all panels), (A) low-rattling
configurations gradually disappear. (B) The corresponding steady-states,
reflecting the low-rattling regions of (A), become accordingly more diffuse
(panels (A) and (B) show simulation data, and use the same 3D configura-
tion space as Fig. 3.2(E)). (C) verifies that our central predictive relation
Eq. 3.3 holds for all drives here, as all three correlations fall along the slope
of the same line (blue: simulation, black: experiment). The diminishing
range of rattling values thus precludes strong aggregation of probability, and
with it self-organization. (D) shows our theoretical prediction (solid black
line) indicating how the most likely configurations are destabilized by drive
randomness. Colored lines track the probability pss at 100 representative
configurations q in simulation, and dashed black lines analytically predict
their trends. Two specific configurations marked by ×-s are tracked across
analyses.
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Moreover, we show that we can analytically predict and control the degree of order in

the system by tuning drive randomness (see Fig. 3.5), as well as internal system friction

(see movie S710 and Fig. 3.6). We note that the derivations of analytical curves in both of

these figures can be found in the supplement of [6], but we omit them here as they are not

essential to the subject matter of this thesis. As driven self-organization arises when the

system has access to a broad range of rattling values, tuning it requires modulating the

rattling of the most ordered behaviors relative to the background high-rattling states.

We can directly manipulate the rattling landscape by modulating the entropy of the

drive pattern. This is done by introducing a probabilistic element to the programmed arm

motion. At each move, we introduce a probability of making a random arm movement not

included in the prescribed drive pattern. Increasing this probability results in flattening the

rattling landscape: ordered states experience an increase in rattling due to drive entropy,

while states whose rattling is already high do not (see Fig. 3.5(A)). Correspondingly, the

steady-state distributions become progressively more diffuse (see Fig. 3.5(B)), causing

localized pockets of order to give way to entropy and “melt” away—just as crystals might

in equilibrium physics (movie S811, see also [79]).

Even as the range of accessible rattling values in the system shrinks, the predictive

relation of Eq. 3.3 continues to hold (Fig. 3.5(C)), enabling quantitative prediction of

how self-organized configurations are destabilized. By calculating the entropy of the drive

pattern as we tune its randomness, we derive a lower-bound on rattling for the system.

Thus, we can analytically predict how steady-state probabilities change as a function

of drive randomness, as shown in Fig. 3.5(D) (up to normalization and γ). This result

10https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s7.mp4
11https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s8.mp4

https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s7.mp4
https://www.science.org/doi/suppl/10.1126/science.abc6182/suppl_file/abc6182s8.mp4
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Figure 3.6. Destroying self-organization by reducing friction. In (A),
we plot the steady-state probabilities at 200 different configurations under
drive A (shown in Fig. 3.4) as we gradually reduce smarticle friction in
simulation (τ is the velocity decay time-scale). Lines are colored according
to state likelihood in the over-damped regime (τ ∼ 0). The solid black curve
is the analytical prediction for the decay of low-rattling states, which also
serves as an upper bound for probabilities of other configurations, which are
predicted by dotted curves (with fitting parameter γ = 3.1). (B) illustrates
the robustness of the relation between probability and rattling as friction in
the system is changed. This, along with panel A, shows that measuring the
overdamped dynamics τ = 0 is sufficient to predict system behaviors for all
lower friction values.

confirms the simple intuition that more predictably-patterned driving forces offer greater

opportunity for the system to find low-rattling configurations, and self-organize.

3.3. Discussion

Our findings suggest that the complex dynamics of a driven collective of nonlinearly

interacting particles may give rise to a situation in which a new kind of simplicity emerges.

We have shown that when quasi-random transitions among configurations dominate the

dynamics, the steady-state likelihood can be predicted from the entropy of local force

fluctuations, which we refer to as rattling. In what we term a “low-rattling selection
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principle,” configurations are selected in the steady-state according to their rattling values

under the given drive.

More significantly, low-rattling provides the basis for self-organized dynamical order

that is specifically selected by the choice of driving pattern. We see analytically and

experimentally that the degree of order in the steady-state distribution reflects the pre-

dictability of patterns in driving forces. Thus, driving patterns with low entropy pick out

fine-tuned configurations and dynamical trajectories to stabilize. This makes it possible

for one collective to exhibit different modes of ordered motion depending on the fingerprint

of the external driving. These modes differ in their emergent collective properties, which

suggests “top-down” alternatives to control of active matter and metamaterial design,

where ensemble behaviors are dynamically self-selected by the choice of driving, rather

than microscopically engineered [78, 80].

Throughout this chapter, we re-evaluated our mathematical results in Ch. 2.4 from

the perspective of nonequilibrium statistical mechanics. In doing so, we discovered and

experimentally validated a new principle of self-organization in nature. Moreover, by

elucidating the relationship between important drive and system parameters we outlined

strategies for control of nonequilibrium collectives. In the following chapter, we will extend

these ideas and explore how to make use of rattling theory in the design of a complex

system in hopes of harnessing self-organization towards microrobotic task-capabilities.
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CHAPTER 4

Designing for Emergence in Robotic Microsystems

In Ch. 3, we developed a theory that explains the emergence of self-organization

phenomena in broad classes of “sufficiently messy” dynamical processes. Rattling theory

is built around a local scalar quantity—rattling, R—that we have proven to be predictive

of steady-state occupancy in Ch. 2.4. On the basis of these results, we also derived

operational primitives for engineering and specifying the steady-state behaviors of systems

far-from-equilibrium. We outlined how properties such as friction and drive entropy can

be used as control parameters over the system’s steady-state, which we used to steer the

system into (and out of) highly fine-tuned and self-organized configurations.

In this chapter, we demonstrate how design parameters can be used to the same effect

in a system of active colloidal microparticles. We explore how to induce self-organization

in a complex system by carefully choosing its design parameters. Moreover, we show

how such self-organization can be exploited towards rudimentary task-capabilities. If the

previous chapter exemplifies the inference potential of robot thermodynamics, this chapter

exemplifies its synthesis potential in a setting outside of control or policy optimization.

From the perspective of robot thermodynamics, there is no difference between optimizing

controller parameters or design parameters—they both present a means of reshaping an

agent’s path distribution towards desired outcomes. And, in this chapter, our desired

outcome will be to induce orderly low-frequency oscillations in a microparticle collective.

Much of the work in this chapter was previously published in [9], except for a few additional
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results that are original contributions of this thesis. We note that the contributions of

this thesis to that work include (but are not limited to): Theoretical modelling of the

microparticle collective, development of computer vision algorithms, and processing of

experimental data.

Spontaneous oscillations on the order of several hertz are the drivers of many crucial

processes in nature. From bacterial swimming to mammal gaits, converting static energy

inputs into slowly oscillating power is key to the autonomy of organisms across scales.

However, the fabrication of slow micrometre-scale oscillators remains a major roadblock

towards fully-autonomous microrobots. In this chapter, we will study a low-frequency

oscillator that emerges from a collective of active microparticles at the air-liquid interface

of a hydrogen peroxide droplet. Their interactions transduce ambient chemical energy into

periodic mechanical motion and on-board electrical currents. Surprisingly, these oscillations

persist at larger ensemble sizes only when a particle with modified reactivity is added to

intentionally break permutation symmetry. We explain such emergent order through the

discovery of a thermodynamic mechanism for asymmetry-induced order. The on-board

power harvested from the stabilized oscillations enables the use of electronic components,

which we will demonstrate by cyclically and synchronously driving a microrobotic arm. This

work highlights a new strategy for achieving low-frequency oscillations at the microscale,

paving the way for future microrobotic autonomy.

4.1. Introduction

The ability to produce low-frequency oscillations is central to the autonomy of living

beings, and is essential to key biological processes such as heartbeats, neuron firings,
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breathing, and locomotion [81–83]. While complex electronics operate at ever-increasing

clock rates of many gigahertz, the frequency of many important biological oscillations

seldom exceeds 100Hz. The slow rate of these oscillations stems from a need to be

commensurate with both the energy budget and the natural timescales of underlying

biological processes, as in the transport of CO2 in plants [84] and in the galloping of

horses [85]. Unlike oscillations arising from external periodic forcing [86–89], these self-

oscillations emerge spontaneously from the balancing of competing dynamical processes

driving systems away from equilibrium [90–92]—a signature of living systems [93].

In artificial microsystems, however, the production of slow self-sufficient self-oscillations

is counterintuitively difficult [94, 95]. Generating self-sustaining mechanical oscillations at

the microscale typically requires the transduction of complex chemical oscillators (e.g.,

Belousov-Zhabotinsky reaction [96]) into periodic changes to a system’s physical con-

figuration [88, 97–101]. Alternative mechanisms for producing self-sufficient mechanical

oscillations based on carefully designed dynamic coupling between responsive elastic mate-

rials and thermal [92, 102], chemical [91, 92, 103], or moisture stimuli [104] have typically

been demonstrated in millimetre-scale (and larger) devices. In contrast, generating slow

periodic electrical signals remains prohibitively challenging aboard untethered microscale

devices, given the limited downward scalability of capacitors and inductors [105, 106],

as well as the power and footprint demands of CMOS oscillators, frequency dividers,

and energy modules [107–109]. Despite these challenges, recent progress has shown that

self-sustaining electrical oscillations can be produced by modulating electrical resistance

with mechanical feedback loops in carefully designed devices, presenting a promising

mechanism for sub-500µm electrical self-oscillators [94].
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In this work, instead of relying on complex chemistries, integrated electronics, or

elaborate mechanical microstructures, we produce robust electromechanical oscillations

aboard a collective of deceptively simple microparticles by exploiting the self-organized

properties of their far-from-equilibrium dynamics. By breaking the permutation symmetry

of a homogeneous particle collective situated at an air-liquid interface, we reliably control

their dynamics to realize simultaneous chemomechanical and electrochemical periodic

energy transduction. In line with our robot thermodynamics framework, we deliberately

exploit their design parameters in order to manipulate the structure of their path distribution,

which leads to novel self-organized dynamical behaviors. We achieve this by introducing a

particle with an enhanced reaction rate, whose stabilizing effect on the system behaviour we

analyze through the lens of asymmetry-induced order and rattling theory. In turn, through

a simple bimetallic on-board fuel cell design, we transduce the system’s self-oscillations

into periodic electrical work to power state-of-the-art microrobotic components, without

the need for batteries or external sources of energy.

4.2. Results

4.2.1. Emergent Low-Frequency Oscillation

Figure 4.1 presents a system of simple microparticles where low-frequency chemomechanical

self-oscillations emerge from the coupling of otherwise self-limiting catalytic reactions easily

trapped at equilibrium. Figure 4.1(A) shows that each of these microparticles, composed of

nothing more than a nanometre-thick Pt patch of radius 125µm microfabricated beneath a

polymeric microdisc, generates a gas bubble when placed at the curved air-liquid interface
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Figure 4.1. Emergence of chemomechanical microparticle self-
oscillation. (A), Schematic of a self-limited system of a single particle
resting still at the air-liquid interface of a H2O2 drop. The particle is com-
posed of a catalytic patch of Pt (yellow) underneath a polymeric disc (blue).
The O2 formation slows down asymptotically over time as the gas bubble
restricts the available catalytic surface area. (B), A 2-particle system, in
contrast, exhibits an emergent and self-sustained beating behaviour as the
bubble merger restores the previously hindered reactivity, thus disrupting
the equilibrium state. (C),(D), Micrograph sequence (in (C)) and tracked
particle coordinates (in (D)) of a 1-particle system that remains still for
an extended period of time. (E),(F), Micrograph sequence (in (E)) and
tracked coordinates (in (F)) of a 2-particle system with emergent beating.
The breathing radius, r(t), is the distance from the collective’s centroid
to each particle, averaged over all particles. (G), The long-term breathing
radius trajectory of the same system as in (E) and (F) demonstrates the
robustness of the beating behaviour. The shaded portion is magnified in
the right panel, where mechanistic model simulations (black) are shown
to match the experimental curve (blue). (H), The phase portraits of 4
independent 2-particle experiments demonstrate reproducible limit cycles
with closed-loop orbits, confirming the periodicity of collective beating. Note
that to calculate the phase portraits the system’s bubble-driven discontinu-
ities were processed through a standard finite-impulse response filter. All
phase portraits share the same axes. (I), The recurrence histograms of the
same 4 experiments all display a narrow peak centred at a period of 3.2s,
consistent with visual evidence in (E). All histograms share the same axes.
(J), The beating frequency can be tuned with the concentration of H2O2.
The dependence predicted by the mechanistic simulations on the basis of
a Langmuir-Hinshelwood kinetics (black curve) matches the experimental
measurements (blue markers). Scale bars, 500µm.

of a H2O2 drop via

H2O2

Pt

−−−→ H2O+
1

2
O2.

This well-studied catalytic reaction has been a long-time favourite in both micro- [110–113]

and macroscopic robotics [92, 114], noted for the fuel’s high energy density and simple

chemistry [114].
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For a single microparticle situated at the interface, the chemical reaction in Fig. 4.1(A)

is self-limiting as the bubble grows and gradually blocks off the fuel’s access to the

catalyst. Consequently, the single-particle system reaches its equilibrium state promptly:

The microparticle remains motionless for a prolonged time (Fig. 4.1(D), Movie S11)

and the bubble asymptotically reaches a terminal radius without rupture (Fig. 4.1(C)).

However, a drastic change occurs when a second identical particle is introduced to the

system. Figure 4.1(B) shows that as the microparticles enter each other’s proximity, the

separately-formed gas bubbles merge. The freed-up catalytic surface area then disrupts

the self-limiting chemistry, destabilizing the original single-particle steady-state. This

allows the merged bubble to grow beyond its threshold, leading to its rupture (Fig. 4.1(E),

t = 3.2s). The collapse imparts an impulse onto the microparticles and propels them in

opposite directions, at which point the particles are drawn back towards one another by

the restorational forces: First, the radial component of buoyancy, Fg, globally directs

the particles towards the apex of the concave air-liquid interface [89]. Second, the local

interfacial deformations result in a mutual attractive capillary force Fc, affectionately known

as the “Cheerios effect” [115, 116]. The combination of this Cheerios effect and catalytic

bubble generation has been observed to produce repetitive back-and-forth motion [117,

118] in swarms of tubular swimmers [119, 120]. All of these factors sum up to a repeatable

cycle of mutual approach, contact, bubble merger, and bubble collapse that we refer to as

particle beating (Fig. 4.1(E)). The robustness of this self-sustained cycle is evidenced by

the tracked coordinates of the two particles over a course of 280s (Fig. 4.1(F) and Movie

1https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/

MediaObjects/41467_2022_33396_MOESM4_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM4_ESM.mp4
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S22), which contrast the single particle scenario where practically no motion was observed.

Notably, while the central challenge in self-oscillatory systems is to keep them away from

equilibria [91, 95], such states are virtually eliminated from our system by the effectively

instantaneous nature of bubble collapse.

We monitored the oscillatory behaviour of the system by tracking its breathing radius

r(t) over time, defined as:

(4.1) r(t) =
1

N

N∑
i=1

√
(xi(t)− x̄)2 + (yi(t)− ȳ)2

for a collection of N particles each with coordinate (xi(t), yi(t)) at time t. In other

words, r(t) is the Euclidean distance from the collective’s centroid (x̄, ȳ) to each particle,

averaged over all particles (see annotations in Fig. 4.1(E)). The system’s periodic beating

is evident in the time evolution of r(t) (Fig. 4.1(G), left panel), the limit cycle of its r(t)

phase portrait (Fig. 4.1(H)), as well as the narrow peak in the recurrence time histogram

(Fig. 4.1(I)). The phase portraits were then constructed by plotting the coordinates of

v(t) = [ṙ(t), r(t)] after applying a low-pass filter, and the time-derivative of the breathing

radius was estimated via finite differencing. Equipped with these dynamical observables,

we analyzed the recurrence properties of the system by finding how often and how quickly

the system returns to a neighborhood of v(t). Hence, for a given experiment comprised of

K samples we collect data at times ti = i∆t, ∀i ∈ {0, · · · , K − 1} with sampling rate ∆t.

While in principle this is all one needs in order to quantify recurrence statistics [121], an

additional step must be taken in order make the calculation robust. We augmented our

v(ti) vectors by “embedding” the time-series according to an integer parameter m [122].

2https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/

MediaObjects/41467_2022_33396_MOESM5_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM5_ESM.mp4
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This resulted in a modified set of coordinates, vm(ti) = [v(ti), · · · , v(ti+m−1)]T , from which

to robustly calculate our recurrence statistics. Finally, to derive the recurrence properties

of a system from an experimental dataset we calculated its recurrence set

(4.2) Rs = {|ti − tj| : ||vm(ti)− vm(tj)|| < ϵ,∀i, j},

over all valid indices. Note that m and ϵ are a fixed choice of positive non-zero embedding

dimension and neighborhood size parameters, respectively. We may then calculate recur-

rence time histograms from the set Rs using any standard scientific computing package.

Taken together, the results drawn from these analyses serve as conclusive evidence of the

long-term stability of system oscillations. The analysis in Fig. 4.1(I) shows a period of 3.2s

for the two-particle system in 10.7wt% H2O2, consistent with Fig. 4.1(G) and Movie S23.

Lastly, we developed a mechanistic Newtonian model based on analytical derivations

of the forces acting on the particles: Fg, Fc, and the non-Stokesian drag force Fd. The net

effect on these forces on particle motion is given by

(4.3)
dvi
dt

=
1

meff
(Fg,i + Fc,i + Fd,i),

where i is a given particle and meff is its effective mass, which is affected by its bubble

and the displaced liquid during acceleration. For details on the analytical expressions

for these forces, we refer readers to the supplement of [9], where these quantities are

explicitly derived at length. Remarkably, we found that our mechanistic model was so

accurate as to capture even the detailed dynamics of the breathing radius’ time evolution

3https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/

MediaObjects/41467_2022_33396_MOESM5_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM5_ESM.mp4
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(Fig. 4.1(G), right panel). We verified the consistency of the beating frequency across 8 sets

of independent experiments with 10.7wt% H2O2 in Fig. 4.1(J). Additionally, the beating

frequency’s dependence on H2O2 concentrations points to a mechanism for exerting fine

control over the beating frequency, as predicted by our mechanistic model based on a

Langmuir-Hinshelwood kinetics of the catalytic surface (Fig. 4.1(J)) [123, 124].

4.2.2. Rattling as a Mechanism for Asymmetry-Induced Order

Our findings in Fig. 4.2 show that the stable emergent self-oscillation can be extended

well beyond N = 2, although curiously only when the system’s permutation symmetry is

broken and not in a homogeneous system of identical particles. We extracted the bubble

burst interarrival time statistics by tracking the time that transpires between each pair

of consecutive bursts in recorded experiments (Fig. 4.2(A)). In homogeneous systems of

identical particles (Fig. 4.2(B)), we show that the likelihood of periodic beating dwindles

gradually with rising particle counts N , reflected in the progressive decay in the sharpness

and amplitude of the initial 3.2s peak corresponding to periodic beating. The decay of

collective periodicity is accompanied by an increase in the probability mass of frequent and

unpredictable bubble bursts taking place less than a second from one another—a result of

bubble mergers and collapses among subsets of particles (see representative N = 5 and 8

micrographs in Fig. 4.2(B)). Interestingly, we find that the interarrival time distributions

of systems beyond N = 7 become statistically indistinguishable from those of a Poisson

process (Fig. 4.2(B), bottom panel) [125]. This shows that our system’s phenomenology

can remarkably vary from coordinated and reliable periodic beating to independent and

effectively stochastic bubble bursts merely as a function of N . The breathing radius



138



139

Figure 4.2. Observations of emergent order via symmetry-breaking.
(A), Schematic of interarrival times in a system of beating microparticles,
defined as the time that transpires between two consecutive bubble col-
lapses. The interarrival time distribution should be tight (i.e., a single
peak) in a perfectly periodic system, and broad in an aperiodic system.
(B), (top to bottom) Interarrival time distributions and optical micrographs
for homogeneous systems of N = 2, 3, 5, and 8 identical particles. As N
increases, the collective system periodicity gradually decays and transitions
to an exponential interarrival distribution at N = 8 (bottom, black curve).
Scale bar, 500µm. (C), Indeed, we observe that the breathing radius of
a homogeneous N = 8 system is not periodic. (D), Asymmetry-induced
order across N predicted by Rattling Theory. A quantification of collective
disorder, the system’s Rattling R is predicted to be lower (i.e. more orderly)
if the relative burst intensity of one particle is increased beyond or decreased
below 1x, which signifies homogeneity. This is experimentally realized by
modulating the Pt patch size on a “designated leader” (DL) particle relative
to the others. The curves are offset to make all R = 0 at 1x intensity to
highlight the effect of system heterogeneity on Rattling. (E), Same as (B),
but for heterogeneous systems of equal particle numbers, where the DL
broke the permutation symmetry. In contrast to the homogeneous systems
(B), they remain robustly periodic across N . It is important to recognize
that the polymeric disc size of a DL is unchanged. Scale bar, 500µm. (F),
Breathing radius for an 8-particle DL system (i.e., N = 7 + 1DL), which
reliably beats periodically. The period of 14.2s extracted from r(t) coincides
with the most probable interarrival time in ((E), bottom).

trajectory in Fig. 4.2(C) confirms the loss of periodicity, as no structure can be discerned

from the noisy low-amplitude fluctuations.

The gradual transition towards aperiodicity in Figs. 4.2(B) and (C) points to the

nominal fragility of periodic beating as the system size increases. Reasoning that the

deliberate introduction of heterogeneity has been shown to produce asymmetry-induced

order [126] in complex networked systems [127–129], we will investigate the effect of

symmetry-breaking on the robustness of particle beating across system sizes. Asymmetry-

induced order is a process by which explicit symmetry-breaking leads to the emergence
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of ordered states in a system [126–129]. Hence, asymmetry-induced order requires both

a symmetry whose breaking can be observed, and a clear notion of “degree of order.”

Which symmetry to break is inherently a system-dependent question, and as such there

are no general means of choosing between symmetry groups to achieve a desired outcome.

However, the degree of order of a system is a challenging property to specify in general.

For one, what is meant by order is often ill-posed. Secondly, even when provided with a

means to metricize order, metrics are often analytically and computationally intractable

because they require global knowledge of system states—as is the case for calculating

entropy. This is further complicated by the fact that, far from equilibrium, entropy is not

sufficient to establish the robustness, stability, or persistence of system configurations (all

of which are attributes often ascribed to “orderly” states) [70]. To this end, physicists

have made use of order parameters to establish more narrowly-construed notions of order

on a case-by-case basis for particular systems [130, 131].

Recent work in nonequilibrium statistical mechanics has made strides towards describing

the emergence of order more generally in broader classes of complex systems. Rattling

theory—a contribution of this thesis (in Ch. 3)—is a novel theory capable of describing the

emergence of order and self-organization in “messy” nonequilibrium dynamical systems [6,

59]. The rattling ansatz sees the behavior of complex systems as stochastic diffusion

processes taking place in high-dimensional configuration spaces in the presence of energy

influxes driving them out of equilibrium. At the heart of the theory lies a local and

computable notion of “degree of order”—rattling. As discussed in the previous chapter,

rattling measures the way in which system configurations respond to external force

fluctuations: Rapid, uncorrelated configurational changes produce high rattling values,
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and slow, correlated changes produce low rattling values. Thus, in what follows we will

use rattling as a general means of measuring and metricizing “degree of order” in a broad

class of systems.

Equipped with a precise way to quantify order in a broad class of complex systems, we

may now develop a system-specific understanding of the ways in which symmetry-breaking

affects the rattling of our system of beating particles in hopes of finding strategies to

stabilize periodic system beating for N > 2. In order to elucidate the role that symmetry-

breaking may play in the self-organized states of our system of active microparticles, we

must now consider specific system symmetries and their relationship to the magnitude of

system-level fluctuations. While our system is not invariant to the action of any obvious

continuous symmetry groups, it is permutation-symmetric [132]. This is to say that our

collection of microparticles are all dynamically identical (up to fabrication tolerances).

Hence, one promising avenue to investigate is the different ways in which permutation-

symmetry breaking may lead to order in our system. Based on results from our mechanistic

modelling of particle beating, we know that there are two ways in which the dynamics

of individual microparticles can be made distinct from one another. First, we know that

changing the volumetric shape of particles will lead to different local hydrodrynamic drag

properties. Second, we know that changing the buoyancy of particles also produces local

changes to individual microparticle dynamics through its effect on capillary forces. However,

changing the shape of our microparticles requires major changes to their fabrication, as

well as nontrivial modifications to the mechanistic model. In contrast, we can easily modify

a particle’s buoyancy by modulating the volume of the bubble forming underneath the

particle, which we can in turn control through the size of their Pt patch.
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To explore the role of permutation-symmetry breaking on our system, we constructed a

simple model that we can work with analytically from the perspective of rattling theory. In

line with the rattling ansatz, our model considers the configurational dynamics of collectives

of beating particles as a diffusion process. We incorporate the effect of heterogenous particle

buoyancies through the inclusion of a parameter modulating the size of bubbles in analogy

to the role of the Pt patch. Our beating particles are perfectly suited for this sort of

analysis, even more so than others, due to the physics of fluid dynamics at low-Reynolds

numbers (∼0.25 Re for our system) [133]. In this regime, inertia ceases to influence the

behavior of systems, leaving viscous forces and stochastic thermal fluctuations to affect

their dynamics substantially—thereby making a diffusive approximation natural.

Our model elucidates the role of design parameters on the structure of the system-

level fluctuations on the basis of two primary assumptions. First, we assume that the

behavior of each individual particle i is monotonically modulated by some real-valued

design parameter Ui from a set U = {U1, · · · , UN} for a system of N particles. These

design parameters correspond by analogy to the Pt patch size. Second, we assumed that

particle i’s bubble burst only affects the other members of the collective and not itself,

which broadly matches experimental observations. We can think of the Ui parameters as

implicitly determining the strength of the impulse imparted by particle i’s bubble burst

onto its neighbors. In particular, we model the effect of this parameter and the bubble

burst strength ai according to the following Boltzmann-like monotonic relationship,

(4.4) ai =
1

Z
e−Ui
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where Z is a normalization factor given by Z =
∑N

i=1 e
−Ui . In other words, the ai

parameters can be thought of in analogy to the size (and strength) of bubbles that a given

particle can support. Hence, we can motivate this modeling choice by envisioning the

gas in bubbles distributing itself according to an energy landscape specified by our Ui

parameters, and thusly influencing the bubble popping strength ai. The normalization

factor Z arises from the fact that we are not interested in the absolute magnitude of the

bubble bursts but rather the effect of their relative magnitudes on the collective behavior.

Now, let us consider the statistical properties of the dynamics of a breathing-radius-like

observable, r̄(t), under a simple diffusive model. As before, r̄(t) is an averaged quantity

over particles: r̄(t) = 1
N

∑N
i=1 ri(t). By assumption, a bubble burst at particle i leaves

particle i stationary, but a burst from some neighbor j exerts an impulse of random

direction onto particle i. In this case, the dynamics of ri(t) evolve according to

(4.5) ṙi(t) =
∑
j ̸=i

aj · ξj

where ξj is normally-distributed delta-correlated multiplicative noise in the Itô convention.

Note that this construction results in an anisotropic diffusion tensor without spatial

dependence, as we are not modelling the geometry of interparticle interactions but rather

the structure of their parameter-induced statistical fluctuations. From this specification of

the system’s diffusive dynamics, we can apply rattling theory to understand the effect of

our design parameters Ui on the self-organized collective behavior of the system.

Given this formulation of the system dynamics, we proceed by calculating the effect

of parameter changes on the magnitude of system-level fluctuations. Letting r(t) =

[r1(t), · · · , rN(t)]T , the correlation structure of the system can be computed analytically
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without empirical covariance matrices:

(4.6) ⟨ṙi(t), ṙj(t)⟩ =
∑
k ̸=i

∑
l ̸=j

akalδkl =
∑
k ̸=i,j

a2k =
1

Z2

∑
k ̸=i,j

e−2Uk

where δkl is the Kronecker delta. We note that the correlation structure of the system

has no dependence on time (i.e., it has infinite temporal correlation) and no dependence

on configuration r(t), leaving the design parameters Ui as the only variables with an

effect on the system behavior. Finally, to express rattling in terms of the system’s design

parameters we require an analytical expression for the determinant of its covariance tensor,

which is challenging in general. Fortunately, for this particular correlation structure there

exists such a closed-form expression, which enables us determine the system’s rattling as a

function of its design parameters:

(4.7) R(U) =
1

2
log det⟨ṙi(t), ṙj(t)⟩ = log

(
(N − 1)

∏N
i=1 e

−Ui

ZN

)
.

Equipped with an understanding of how the system’s design parameters affect its rattling,

we can now use the model as a tool to guide our experimental design. We will take two

different approaches to system parameter design: First, we will explore the introduction

of a “designated leader” particle, and then we will explore an “imprecision engineering”

approach wherein poor manufacturing tolerances lead to more robust system behaviors.

While there are infinitely many parameter combinations for a given collection of N

particles, one of the simplest design alterations to study is the effect of a single particle

differing from the rest—for reasons that we will see shortly, we term this particle a

designated leader. In this setting, one particle will have its parameter be UDL while the
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Figure 4.3. Rattling as a function of patch size in diffusive model.
Here, we study the effect of a given particle’s U parameter (in analogy to
Pt patch size) on the rattling of collectives of varying sizes. Note that we
subtract the constant offset in rattling due to system size so that R = 0 at
U = 0 for all N . We find that any variability in the size of the particle’s patch
produces a drop in rattling, leading to asymmetry-induced order. When
a particle becomes inert as U increases, it stops contributing to system-
level fluctuations, leading to a modest drop in rattling independent of N .
However, as U decreases the modified particle’s bubble bursts dominate and
effectively become the sole source of variance in the system’s configurational
degrees of freedom. Such coordination among degrees of freedom leads to a
sharp drop in rattling dependent on N .

rest of the N − 1 particles will have it be Ū (which we take to be a constant fixed a priori).

Rearranging the expression in Eq. 4.7, we have the following expression

R(UDL, N) = −UDL + log

(
(N − 1)e−(N−1)Ū(

e−UDL + (N − 1)e−Ū
)N
)
,

which allows us to make predictions about the behavior of a collection of N beating particles

with a single designated leader. However, much in the same way that entropy can trivially

depend on system size (e.g., number of microstates), Eq. 4.2.2 does as well. Thus, to

focus on the dependence of R(UDL, N) on UDL, we subtract the constant bias that system

size contributes to the value of rattling. To do this, we calculate R(UDL, N)−R(Ū , N)
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for a choice of Ū that we fix across all system sizes, where we note that R(Ū , N) is

merely a constant that offsets the value of rattling to be zero when UDL = Ū . Since

R(Ū , N) is exclusively a function of the number of particles for a given Ū , subtracting it

from R(UDL, N) precisely removes the constant contribution of system size to the overall

magnitude of rattling. As detailed in [6], constant offsets to the rattling values of a system

do not affect its behavior. Only changes to the rattling landscape—that is, changes to the

relative rattling values between configurations (or parameters)—have an effect on system

behavior, which motivates our approach.

In Fig. 4.3 we show the results of varying the parameters of the designated leader for

collectives of various sizes, while fixing Ū = 0 and subtracting the bias in rattling due to

system size. Crucially, we observe that any deviation from the parameter values of the rest

of members of the collective (i.e., away from UDL = 0) results in a reduction in rattling.

Thus, our model predicts that any amount of heterogeneity will lead to increasingly ordered

system states. Such asymmetry-induced order has been studied in networked systems of

oscillators [126–129], but its emergence as a low-rattling phenomenon is a novel finding.

We note that our results in Fig. 4.2(D) are also based on Eq. 4.2.2, except for the fact

that the x-axis is rescaled to be in line with the more intuitive notion of “relative burst

intensity.”

Through this mechanism, order arises in one of two distinct ways. First, as UDL

increases, the designated leader particle becomes effectively inert. This is to say that the

strength of its bubble bursts aDL asymptotically approach zero, as though it were a patchless

particle. As a result, the leader particle acts as dead weight and does not contribute to

system-level fluctuations, leading to a modest decrease in rattling—independent of the total
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Figure 4.4. Effect of designated leader on self-organization. On
the left panel, we simulate the dynamics in Eq. 4.5 and calculate their
rattling and steady-state densities numerically. On the right panel, we
consider experimental data from an 8 particle collective in both standard
(∆UDL = 0%) and designated leader configurations (∆UDL = 40%), which
we then process using the same procedure as for the left panel. While the
absolute magnitudes of parameter values for the simulation are arbitrary,
the ∆UDL values are determined from the actual Pt patch sizes used on the
experimental systems. For both the simulated and the experimental data,
the results are consistent with rattling theory with γ = 1).

number of particles—that matches experimental observations. Second, as UDL decreases,

the designated leader particle’s bubble bursts become stronger and its contribution to the

magnitude of system-level fluctuations dominates over those of other particles. In turn,

this effectively leads to a concentration of all variability and randomness in the system

into a single of its many degrees of freedom, thereby leading to significant correlations in

the behavior of all particles and a resulting drop in rattling. Note that as more particles

are added more degrees of freedom become correlated, leading to sharper drops in rattling

as a function of N . Remarkably, these outcomes fall in line with the predictions of rattling

theory in both simulations and experiments (see Fig. 4.4). More precisely,

(4.8) p(q) ∝ e−γ(R(q)+S(q)),
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Figure 4.5. Rattling as a function of patch variance in diffusive
model. Here, we study the effect of randomly assigning according to a
log-normal distribution. Using the Fenton-Wilkinson approximation [134],
we are able to derive an analytical expression for rattling as a function of
the mean and variance of the Ui parameters in Eq. 4.9. For a fixed choice
of mean, this figure depicts how variance in the distribution of Ui affects
rattling across ensembles of different sizes.

where decreases of UDL increase effective drive entropy S(q), thereby lowering p(q). We

note that this result from [6] was originally derived for Fig. 3.5. Hence, on the basis of these

results and other studies of asymmetry-induced order we chose to study the influence of

designated leaders on the collective behavior experimentally by producing leader particles

with larger Pt patches.

Prior to concluding this subsection, we will briefly consider one additional approach

to the selection of microparticle design parameters. We may think of the designated

leader approach to parameter selection as being in line with the broader doctrine of

“precision engineering.” In some sense, the introduction of a designated leader is similar to

asking: What is the most precise perturbation one can make to the underlying system

structure in order to realize some desired goal? In what remains of this subsection, we

will explore an entirely different approach—one that is much more philosophically in line
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with the imprecision-driven, stochastic roots of this thesis. To this end, let all Ui ∈ U be

normally distributed random variables, i.e., Ui ∼ N(µ, σ2). We may motivate this setting

by interpreting µ as a desired Pt patch size and σ2 being the result of imprecision in the

manufacturing process.

Now, we will investigate how rattling varies in expectation as a function of µ, σ2,

and the number of particles N . However, the analytical expression for rattling in Eq. 4.7

depends on exponentials of Ui’s, as opposed to the random variables themselves. To make

progress, we must reason about log-normal random variables instead (i.e., Yi = e−Ui).

Then, making use of the Fenton-Wilkinson approximation for sums of log-normal random

variables [134] we arrive at the following expression for rattling:

(4.9) R(µ, σ2, N) = log(N − 1)−N

(
µ− log

(1
2

(
σ2− log

(
1+

eσ
2 − 1

N

))
+ log(Neµ)

))
.

Fixing µ, we proceed to evaluate this expression as a function of σ2 across different values

of N in Fig. 4.5. As expected, at low values of σ2 there is no drop in rattling because

all particles effectively have identical patch sizes in this regime. However, as we increase

σ2 across ensemble sizes we see a transition point beyond which there is a large drop in

expected rattling values. Notably, the size of the drop increases as the ensemble grows

in size. This is similar to the effect we saw in Fig. 4.3, where larger numbers of particles

created more opportunities for coordination and for drops in rattling. However, unlike

Fig. 4.3, in this setting the drop in rattling becomes saturated. This is because, unlike

the designated leader setting, even at high variances there may be multiple particles

with enhanced reaction rates, leading to competition between particles and hampering

self-organization. That being said, we note that the Fenton-Wilkinson approximation of



150

sums of log-normals tends to fail at the tails of the distribution, which may in fact result

in even stronger self-organization.

Thus, instead of choosing an individual particle and carefully modulating its patch size,

we may have been able to achieve a similar effect by instead manufacturing the particles

with poor tolerancing, which is reminiscent of Shannon’s reliable circuits made out of

unreliable relays [135] and in line with the principles of this thesis. We note that this is an

original, unpublished contribution of this thesis. However, in what follows we will proceed

by taking the designated leader approach.

4.2.3. Persistent Periodicity via Symmetry-Breaking

Using the analytical model we derived in the previous subsection, we were able to connect

a bubble’s relative size with its contribution to system-level fluctuations, and in turn

collective order. The model’s predictions in Fig. 4.2(D) suggest that any deviation in

a single particle’s bubble size relative to the rest of the ensemble (i.e., with relative

burst intensity away from 1x) results in a more orderly system as quantified by lower R.

Interestingly, the reduction in R is found to be particularly significant when a bubble

larger (and stronger) than its peers is introduced, which we confirmed with experiments.

We note that this novel mechanism for asymmetry-induced order applies to a broad class

of complex systems wherein parametric heterogeneities control the fluctuations of strongly

interacting elements.

In line with these results, we broke the permutation-symmetry of the original system

experimentally by adding a “designated leader” (DL) particle with an enlarged Pt patch of

radius 175µm (Fig. 4.2(E)). Note that since the nanometre-scale thickness of the Pt layer
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is negligible compared to that of the unchanged 10µm-thick polymeric microdisc, the DL

design does not alter the particle’s volumetric geometry. However, the heterogeneity among

the catalytic surface areas translates directly to unequal bubble growth rates between

the DL and its neighbours, which in turn drastically affects their collective dynamics in

accordance with our theoretical predictions in Fig. 4.2(D): We observe robustly periodic

bubble collapses across N in the sharp peaks of the interarrival distributions in Fig. 4.2(E),

suggesting that DLs are able to sustain the periodicity of particle beating even at high

particle counts. Figure 4.2(F) depicts the time evolution of the breathing radius for a

system of N = 7 + 1DL particles (see also Movie S44). In contrast to the homogeneous

N = 8 system (Fig. 4.2(C)), the heterogeneous DL system exhibits a stable long-term

self-oscillation with a period of 14.2s, owing to the broken permutation symmetry.

Figures 4.6(A,i-vii) and (B,i-vii) explain the microscale physics arising from the inten-

tionally broken symmetry (see also Movie S35). When a DL particle with an enlarged Pt

patch is paired with a non-DL particle, the heterogeneity in bubble sizes leads to the sub-

sumption of the non-DL particle bubble into the DL bubble upon contact (Figs. 4.6(A,ii-v)

and (B,ii-v)). This coalescence behaviour is distinct from that of equal-sized bubbles

previously shown in Fig. 4.1(B), where an unstable merged bubble forms halfway between

the particles. Instead, the merged bubble sticks to the former location of the large parent

bubble underneath the DL particle, seen in Figs. 4.6(A,iii) and (A,v). This behaviour

falls under the sticking bubble regime in the literature, a phenomenon long observed in

experiments [136, 137] but only recently thoroughly studied and theorized in a catalytic

4https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/

MediaObjects/41467_2022_33396_MOESM7_ESM.mp4
5https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/

MediaObjects/41467_2022_33396_MOESM6_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM7_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM7_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM6_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM6_ESM.mp4
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Figure 4.6. Designated leaders induce periodic limit cycles. (A),(B),
Features of DL beating explained with schematic (A) and micrograph se-
quence (B) of a 2-particle heterogeneous system. The leader particle is
able to grow a large bubble promptly and subsume the smaller bubbles of
neighbouring particles across several rounds of bubble coalescence. Scale
bars, 1mm. (C),(D), Phase portraits of homogeneous (C) and heterogeneous
(D) systems of N = 2, 3, 6, and 8. Only the latter is able to maintain the
closed-loop orbits at high particle counts. (E), Schematic of recurrence
time calculation. The recurrence time is the time it takes to return from a
given system configuration to the neighborhood of said configuration. (F),
Recurrence histogram compiling all of the recurrence times observed across
experiments of the 2-particle heterogeneous system (N = 1 + 1DL). (G),
Recurrence entropy as a function of N for both homogeneous (yellow) and
heterogeneous/DL (blue) systems. Low recurrence entropy is a quantita-
tive indicator of periodic behaviour. The homogeneous system’s recurrence
entropy trends upward, suggesting a decay in periodicity, while the DL
system’s entropy remains low in accordance with its observed periodicity
even at high N .
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H2O2 bubble system [138]. Importantly, contrary to the more intuitive moving bubble

regime where the merged bubble sits at the centre of mass of its parents [139, 140], the

coalescence behaviour transitions into the sticking regime only as the parent bubbles differ

sufficiently in size [138], or, in other words, with sufficient particle heterogeneity. As

shown in the rest of Figs. 4.6(A) and (B), the two particles in the system undergo several

rounds of small-scale bubble coalescence, eventually causing the DL bubble to collapse.

We find that the bubble’s rupture radius is approximately 1.7 times larger than that for a

homogeneous system shown in Fig. 4.1(F), stabilized by the particle sitting directly on

top. This contributes to an even lower-frequency chemomechanical oscillation (Figs. 4.2(F)

and 4.6(F)) than that previously observed in homogeneous systems (Fig. 4.1(I) and 4.2(B)).

Figures 4.6(C) and (D) contrast the breathing radius phase portraits between homo-

geneous and heterogeneous systems of different N . We observe that the homogeneous

systems experience a decay of periodicity evidenced by the gradual collapse of limit cycle

orbits in its phase portraits as a function of N , consistent with trends in Fig. 4.2(B). In

contrast, the heterogeneous systems’ limit cycles are robust to variations in N , retaining

their closed-loop phase-space orbits. To rigorously quantify the effect that DLs have on

collective periodicity, we analysed the recurrence structure of the dynamical trajectories

across system sizes [121]. As previously discussed and sketched in Fig. 4.6(E), recurrence

analyses capture the dynamical properties of system behaviours by measuring the time the

system takes to return to a given state’s neighbourhood. The set of all such time intervals

is compiled into a recurrence histogram (Fig. 4.6(F)) whose recurrence entropy can be

used to quantify the complexity of dynamical trajectories [122], with perfect periodicity

corresponding to zero entropy.
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Figure 4.7. Designated leaders induced limit cycles in N = 2 − 6.
Master plots associated with additional phase portrait experiments.

The linear entropy increase for homogeneous systems as a function of N (Fig. 4.6(G))

corresponds to the increasing disorder in the system’s recurrences that is consistent with

the progressive loss of periodicity observed in Figs. 4.2(C) and 4.6(C). Also in accordance
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Figure 4.8. Designated leaders induced limit cycles in N = 7 − 11.
Master plots associated with additional phase portrait experiments.

with earlier qualitative trends in Figs. 4.2(F) and 4.6(D), the recurrence entropy of the

DL system is locally invariant to changes in N , thereby providing quantitative evidence

of the robustness of the periodic beating induced via symmetry-breaking. While we find
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that the system’s invariance to particle number holds up to N = 11, we leave the study of

larger particle systems for future work (Figs. 4.7 and 4.8).

4.2.4. Self-Oscillating Microgenerators

Through a simple modification to the particle design, we are able to harness the robust

chemomechanical beating to generate an oscillatory electric signal. As illustrated in

Fig. 4.9(A) and (B), we fabricated particles with a Pt pattern closely lined up with

(though spatially separate from) an additional metal patch of either Au or Ru. With the

bimetallic design, the previously auto-redox catalytic decomposition of H2O2 on Pt is in

part separated into an oxidation half-reaction on Pt and a reduction half-reaction on Ru

(Au) [110, 111, 141]:

Pt: H2O2 −→O2 + 2H+ + 2e−

Ru (Au): H2O2 + 2H+ + 2e− −→ 2H2O

Overall: 2H2O2 −→ 2H2O+O2.

Consequently, a potential difference is established at the two electrodes that essentially

transforms the particle into an on-board fuel cell. These same principles have been

previously used to generate voltages in nanomotors, where bimetallic rods and nanoparticles

are propelled electrokinetically by the accompanying electric field [142–144]. A micrograph

of our fabricated prototype is displayed in Fig. 4.9(B). Note that the metallic leads

extending outwards were added to facilitate electrical characterization of the devices

and are not necessary to their operation. The leads were passivated and hence do not
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Figure 4.9. Self-organized oscillation powers a microrobotic arm.
(A), Schematics of the generation of an oscillatory electrical current from
chemomechanical beating. The pair of metals (Pt-Ru or Pt-Au) patterned
on a polymer base constitute the electrodes of a H2O2 fuel cell, which serves
as an on-board voltage source. The periodic bubble growth and collapse
in a beating system separately modulates the electrical resistance between
the electrodes, leading to an oscillatory current. (B), Optical micrograph
of a typical Pt-Ru fuel cell particle. The entire surface, less the electrode
area, is passivated with a thin layer of insulating SU-8 polymer (shaded).
The metallic leads on the left are not necessary for device operation and are
included to facilitate measurement. Scale bar, 100µm. (C), Short-circuit
current density as a function of H2O2 concentration for a Pt-Ru device.
(D),(E), Cyclic motion of a microrobotic actuator driven by the oscillatory
current. The schematics and micrographs in (D) show the extended and
contracted states of the actuator respectively under the ON and OFF current
conditions, as modulated by the bubble size. The current measurement over
time and the actuator length change (E) closely match, confirming that the
cyclic actuation is driven by the oscillatory current, which itself is emergent
from the particle beating. Scale bar, 2µm.
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participate in any electrochemical reactions. The Pt-Ru and Pt-Au fuel cell devices

measured open-circuit voltages of 144.9mV ± 2.4 and 21.4mV ± 3.5, respectively, in a

25.8wt% H2O2 solution with 0.075M KNO3 added for conductivity. We note these values

are in line with prior mechanistic studies [110, 111]. Under the same conditions, the Pt-Ru

fuel cell delivers a short-circuit current density of 1.71mA/cm2± 0.38 and a current of

56.7nA ± 12.4. As a benchmark, a significantly larger 1.5 × 6cm thermo-mechano-electrical

self-oscillator reported recently recorded a peak current of ∼47nA [145]. The dependence

of the current density on H2O2 concentration is summarized in Fig. 4.9(C).

As before, the system’s collective beating drives the synchronized formation and collapse

of bubbles on each particle. However, unlike previous experiments, here the instantaneous

size of the bubble also modulates the electrical conductance from one electrode to the

other (Fig. 4.9(A), N = 2 for demonstration). This effect, in conjunction with the fuel

cell’s voltage, enables the onboard generation of oscillatory currents that are in phase

with the mechanical beating. In a Pt-Ru device, we observe that the ON/OFF ratio

between maximal and minimal currents can exceed 106, corresponding to when the bubble

is absent and at its threshold size. Importantly, the same chemical energy harnessed from

the environment is used to simultaneously drive the mechanical oscillation, generate the

electrical voltage, and modulate the electrical conductance. Multifunctionality of this kind

is emblematic of emerging paradigms such as embodied energy [146], and is crucial to the

development of efficient microsystems.

Figures 4.9(D) and (E) exemplify the beating system’s capability to cyclically drive

a microrobotic load with its self-generated oscillatory electrical current. In this proof-of-

concept demonstration, we wired the Ru electrode of a fuel cell particle to a state-of-the-art
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Pt-Ti electrochemical microactuator (see Fig. 4.9(D)), originally invented for a tethered

sub-100µm walker [147]. In our experimental configuration, charged species from the

electrolyte is desorbed from the Pt surface of the bimorph microactuator as current

passes through, causing it to deswell and its curvature/length to change. Evident in

Fig. 4.9(D), the periodic actuation of the bimorph (red curve, representative snapshots in

Fig. 4.9(D), also Movie S56) is driven by the periodic spikes in the current signal (blue

curve), which in turn is modulated by the chemomechanical beating of two particles.

Because the outer radius of the Pt electrode (Fig. 4.9(B)) exceeds the 125µm patch radius

of a standard particle, the system is stabilized by the added heterogeneity, which also

explains the observed sub-0.03Hz beating frequency. In contrast, the control experiments

in Fig. 4.9(E) show the actuator idling in the absence of a second particle and hence

any mechanical beating. By harnessing the emergent power generation of an ensemble

of microparticles, we have demonstrated the design and modular interoperability of key

microrobotic components—energy sources and locomotive elements—based on the physics

of self-organization.

4.3. Discussion

Through the discovery of physical mechanisms for asymmetry-induced order, we con-

structed self-oscillating electrical generators capable of powering on-board microrobotic

components from the interactions of simple microparticles. Our results stand in contrast

to more traditional microrobotic approaches focusing on the design of intricate electrome-

chanical assemblies to produce alternating electrical currents [94]. By relying on our

6https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/

MediaObjects/41467_2022_33396_MOESM8_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM8_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-33396-5/MediaObjects/41467_2022_33396_MOESM8_ESM.mp4
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system’s self-organized behaviours, we circumvented the design of complex contraptions

to harvest and transduce chemical energy into periodic electrical and mechanical work—

a crucial step towards fully-autonomous microrobots [146, 148]. The use of on-board

electrical currents will enable the integration of sensors and computational elements to

enrich physical microparticle interactions [149], forming the basis for future collectives

wherein the long-envisioned potential of complex inter-particle communications can be

implemented [120]. We plan on extending our approach into studying larger collections

of microparticles in search of general principles for the top-down design of active matter

systems, where an understanding of system symmetries and environmental forcing may

enhance their task-capability. Unifying perspectives from their respective fields, our work

suggests that future microrobots and active matter systems may become more robust and

task-capable when we design them to exploit the physics of the environments they inhabit.

This chapter exemplifies a robot thermodynamics approach to microsystem design.

We used low-rattling selection—itself derived from path-continuity-constrained maximum

caliber trajectory statistics (in Ch. 2.4)—as a guiding principle in the design of a collective

of active microparticles. In doing so, we were able to optimize the properties of microparticle

collectives and achieve novel task-capabilities. In the following chapter, we will explore

a robot thermodynamics approach to reinforcement learning. By encouraging agents to

satisfy maximally diffusive trajectory statistics, we will find that many of the limitations

of reinforcement learning in robotics can be overcome.
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CHAPTER 5

Overcoming Temporal Correlations in Robot Learning

Throughout this thesis, we have argued for the use of path distributions as mathe-

matical primitives for inference and synthesis of goal-directed behaviors, proposing robot

thermodynamics as a framework to achieve this. In Chs. 2.4 and 3, we explored the

properties of systems with bounded velocity fluctuations. We found that the path distri-

butions of such systems admit a “low-rattling selection principle” capable of predicting

global steady-state statistics from a local measure of order, termed rattling. In Ch. 4,

we explored the use of design parameters as a means of reshaping an agent’s path dis-

tribution, opting to choose parameters that minimize a system’s rattling as a means of

inducing self-organization. In doing so, we were able to make a simple collection of active

particles generate alternating currents to power state-of-the-art microrobot arms. While

choosing design parameters provides us with means of making gross-level changes to an

agent’s path distribution, here we will make use of reinforcement learning and policy

optimization to reshape path distributions—and, in doing so, fully realize the promise of

robot thermodynamics as a learning and control framework. By centering our approach

on maximally diffusive trajectory statistics (see Ch. 2.6), in this chapter we are able to

develop a reinforcement learning framework that overcomes the temporal correlations that

plague embodied learning agents. We note that most of the work in this chapter was

previously published in [7], which this thesis contributed to in its entirety.
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Robots and animals both experience the world through their bodies and senses. Their

embodiment constrains their experiences, ensuring they unfold continuously in space

and time. As a result, the experiences of embodied agents are intrinsically correlated.

Correlations create fundamental challenges for machine learning, as most techniques rely

on the assumption that data are independent and identically distributed. In reinforcement

learning, where data are directly collected from an agent’s sequential experiences, violations

of this assumption are often unavoidable. Here, we derive a method that overcomes this

issue by exploiting the statistical mechanics of ergodic processes, which we term maximum

diffusion reinforcement learning. By decorrelating agent experiences, our approach provably

enables single-shot learning in continuous deployments over the course of individual task

attempts. Moreover, we prove our approach generalizes well-known maximum entropy

techniques, and robustly exceeds state-of-the-art performance across popular benchmarks.

Our results at the nexus of physics, learning, and control form a foundation for transparent

and reliable decision-making in embodied reinforcement learning agents.

5.1. Introduction

Reinforcement learning (RL) is a flexible decision-making framework based on the

experiences of artificial agents, whose potential for scalable real-world impact has been

well-established through the power of deep learning architectures. From controlling

nuclear fusion reactors [150] to besting curling champions [151], RL agents have achieved

remarkable feats when they can exhaustively explore how their actions impact the state of

their environment. Despite their impressive achievements, RL agents—especially deep RL

agents—suffer from limitations preventing their widespread deployment in the real world:
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Their performance varies across initializations, their sample inefficiency demands the use

of simulators, and they struggle to learn outside of episodic problem structures [152–

154]. At the heart of these shortcomings lies a violation of the assumption that data are

independent and identically distributed (i.i.d.), which underlies most of machine learning.

While learning typically requires i.i.d. data, the experiences of RL agents are unavoidably

sequential and correlated across points in time. It is no wonder, then, that many of deep

RL’s most impactful advances have sought to overcome this roadblock [19, 155, 156].

Over the past decades, researchers have started to converge onto an understanding that

destroying temporal correlations is essential to sample efficiency and agent performance,

seeking to address them in two primary domains: During optimization and during sample

generation. When we consider optimizing a policy from a database of sequential agent-

environment interactions, sampling in random batches is known to reduce temporal

correlations. For this reason, experience replay [157] and its many variants [158–160]

have been successful in producing large performance and sample efficiency gains across

tasks and algorithms [161–163]. This simple insight—merely sampling experiences out of

order—was a key contributing factor to one of deep RL’s landmark triumphs: Achieving

superhuman performance in Atari video game benchmarks [164].

Nonetheless, temporal correlations also arise during data generation, where their

impact cannot be alleviated through sampling alone. In turn, temporal correlations must

be mitigated during data acquisition as well, which requires techniques to sufficiently

randomize the sample generation process. In this regard, the maximum entropy (MaxEnt)

RL framework has emerged as a key advance [18, 36, 41, 165–170]. These methods seek to

generate randomness during optimization and data acquisition by maximizing the entropy
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of an agent’s policy, which decorrelates their action sequences. In doing so, MaxEnt RL

techniques have been able to achieve better exploration and more robust performance [42].

However, does maximizing the entropy of an agent’s policy actually decorrelate their

experiences?

In this chapter, we will prove that this is generally not the case. To address this

gap we introduce maximum diffusion (MaxDiff) RL, a framework that provably decorre-

lates agent experiences during sample generation, and realizes statistics indistinguishable

from i.i.d. sampling by exploiting the statistical mechanics of ergodic processes. Our

approach efficiently exceeds state-of-the-art performance by diversifying agent experiences

and improving state exploration. By articulating the relationship between an agent’s

embodiment, diffusion, and learning, we prove that MaxDiff RL agents are capable of

single-shot learning regardless of how they are initialized. We additionally prove that

MaxDiff RL agents are robust to random seeds and environmental stochasticity, which

enables consistent and reliable performance with low-variance across agent deployments

and learning tasks. The work in this chapter sheds a light on foundational issues holding

back the field, highlighting the impact that agent properties and data acquisition can play

on downstream learning tasks, and paving the way towards more transparent and reliable

decision-making in embodied RL agents.

5.2. Results

5.2.1. Temporal Correlations Hinder Performance

Whether temporal correlations and their impact can be avoided depends on the properties

of the underlying agent-environment dynamics. Completely destroying correlations between
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agent experiences requires the ability to discontinuously jump from state to state without

continuity of experience. For some RL agents, this poses no issue. In settings where

agents are disembodied, there may be nothing preventing effective exploration through

jumps between uncorrelated states. This is one of the reasons why deep RL recommender

systems have been successful in a wide range of applications, such as YouTube video

suggestions [171–173]. However, continuity of experience is essential to many RL problem

domains. For instance, the smoothness of Newton’s laws makes correlations unavoidable

in the motions of most physical systems, even in simulation. This suggests that for

systems like robots or self-driving cars overcoming the impact of temporal correlations on

performance presents a major challenge.

To illustrate the impact this can have on learning performance, we devised a toy task

to evaluate deep RL algorithms as a function of correlations intrinsic to the agent’s state

transitions. Our toy task and agent dynamics are shown in Fig. 5.1(A), corresponding to

a double integrator system with parametrized momentum anisotropy. The task requires

learning reward, dynamics, and policy representations from scratch in order to move a

planar point mass from a fixed initial position to a goal location. The system’s true linear

dynamics are simple enough to explicitly write down, which allows us to rigorously study

temporal correlations across state transitions by analyzing its controllability. Controllability

is a formal property of control systems that describes their ability to reach arbitrary states

in an environment [21, 22]. In linearizable systems, state transitions become degenerate and

irreversibly correlated when they are uncontrollable. However, if the agent is controllable

the impact of correlations can be overcome, at least in principle. While the relationship

between controllability and temporal correlations has been studied for decades [174], it is
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only recently that researchers have begun to study its impact on learning processes [175–

177].

Figure 5.1 parametrically explores the relationship between our toy system’s controlla-

bility properties and the learning performance of state-of-the-art deep RL algorithms. The

point mass dynamics are parametrized by β ∈ [0, 1], which determines the relative difficulty
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Figure 5.1. Temporal correlations break the state-of-the-art in RL.
For most systems, controllability properties determine temporal correlations
between state transitions (see Ch. 2.3.2). (A), Planar point mass with
dynamics simple enough to explicitly write down and whose policy admits
a globally optimal analytical solution. The system’s 4-dimensional state
space is comprised of its planar positions and velocities. We parametrize
its controllability through β ∈ [0, 1], where β = 0 produces a formally
uncontrollable system. The task is to translate the point mass from p0 to pg
within a fixed number of steps at different values of β, and the reward is
specified by the negative squared Euclidean distance between the agent’s
state and the goal. We compare state-of-the-art model-based and model-free
algorithms, NN-MPPI and SAC respectively, to our proposed maximum
diffusion (MaxDiff) RL framework. (B),(D), Representative snapshots of
MaxDiff RL, NN-MPPI, and SAC agents (top to bottom) in well-conditioned
(β = 1) and poorly-conditioned (β = 0.001) controllability settings. (C),
Even in this simple system, poor controllability can break the performance
of RL agents. As β → 0 the system’s ability to move in the x-direction
diminishes, hindering the performance of NN-MPPI and SAC, while MaxDiff
RL remains task-capable. For all bar charts, data are presented as mean
values above each error bar, where each error bar represents the standard
deviation from the mean with n = 1000 (100 evaluations over 10 seeds for
each condition). All differences between MaxDiff RL and comparisons within
this figure are statistically significant with P < 0.001 using an unpaired
two-sided Welch’s t-test.

of translating along the x-axis (Fig. 5.1(A)). When β = 0 the system is uncontrollable and

can only translate along the y-axis, which illustrates the sense in which state transitions

become irreversibly correlated. While the system is formally controllable for all non-zero

β, as β → 0 fewer lateral transitions become available for the same range of actions,

introducing temporal correlations along the system’s x-coordinate (see Fig. 2.4 also).

We evaluated the performance of state-of-the-art model-based and model-free deep RL

algorithms on our task—model-predictive path integral control (NN-MPPI) [46] and soft

actor-critic (SAC) [19], respectively—at varying values of β, from 1 to 0.001. As expected,

at β = 1 both NN-MPPI and SAC are able to accomplish the toy task (Fig. 5.1(B)).
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However, as β → 0 the performance of NN-MPPI and SAC degrades parametrically

(Fig. 5.1(C)), up until the point that neither algorithm can solve the task, as shown in

Fig. 5.1(D). Hence, temporal correlations can completely hinder the learning performance

of the state-of-the-art in deep RL even in toy problem settings such as this one, where a

globally optimal policy can be analytically computed in closed form.

Failure to mitigate temporal correlations between state transitions can prevent effective

exploration, severely impacting the performance of deep RL agents. As Fig. 5.1(D)

illustrates, neither NN-MPPI nor SAC agents are able to sufficiently explore in the x-

dimension of their state space as a result of their decreasing degree of controllability (see

Ch. 2.3.2). This is the case despite the fact that NN-MPPI and SAC are both MaxEnt

RL algorithms [19, 20], designed specifically to achieve improved exploration outcomes

by decorrelating their agent’s action sequences. In contrast, our proposed approach—

MaxDiff RL—is able to consistently succeed at the task and is guaranteed to realize

effective exploration by focusing instead on decorrelating agent experiences, i.e., their state

sequences (see purple in Fig. 5.1(B-D)), as we discuss in the following subsection.

5.2.2. Maximum Diffusion Exploration and Learning

Most RL methods presuppose that taking random actions produces effective explo-

ration [178, 179], and sophisticated techniques like MaxEnt RL are no different. However,

as we previously illustrated, whether this is actually possible depends on the agent’s

controllability properties and the temporal correlations these spontaneously induce in their

experiences (see Fig. 5.2(C) and Ch. 2.3.2). To overcome these limitations, we propose
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Figure 5.2. Maximum diffusion RL mitigates temporal correlations
to achieve effective exploration. (A),(B), Systems with different planar
controllability properties. (C), Whether action randomization leads to
effective state exploration depends on the properties of the underlying state-
transition dynamics (see Ch. 2.3.2), as in our illustration of a complex bipedal
robot falling over and failing to explore. (D), While any given policy induces
a path distribution (left), MaxDiff RL produces policies that maximize the
path distribution’s entropy (right). The projected support of the robot’s
path distribution is illustrated by the shaded gray region. We prove that
maximizing the entropy of an agent’s state transitions results in effective
exploration (see Chs. 2.3.4 and 2.5.1). (E), Our approach generalizes the
MaxEnt RL paradigm by provably optimizing trajectory entropy, as we show
in this chapter. (F), This leads to distinct learning outcomes because agents
reason about the impact of their actions on state transitions, rather than
their actions alone.

decorrelating agent experiences as opposed to their action sequences, which forms the

starting point to our derivation of the MaxDiff RL framework.
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Prior to synthesizing policies or assessing their impact on learning outcomes, we require

a formalization of agent experiences. Without considering policies, we see the agent-

environment state transition dynamics as an autonomous stochastic process, whose sample

paths x(t) take value in a state space X ⊂ Rd at each point in time within an interval

T = [t0, t]. Then, we see agent experiences as collections of random variables parametrized

by time, whose realizations x(t) are the sample paths of the underlying agent-environment

process. When T = {1, · · · , T} is discrete, we use x1:T instead of x(t). In this context,

the probability density function over state trajectories, P [x(t)] (or P [x1:T ]), completely

characterizes an agent’s experiences and their properties (see Ch. 2.1.2). We may now

begin our derivation by asking: What is the most decorrelated that agent experiences can

be?

To answer this question, we draw from the statistical physics literature on maximum

caliber [6, 11, 16], which is a generalization of the variational principle of maximum

entropy [180]. The goal of a maximum caliber variational optimization is to find the

trajectory distribution Pmax[x(t)], which optimizes an entropy functional S[P [x(t)]]. The

optimal distribution would then describe the paths of an agent with the least-correlated

experiences, but its specific form and properties depend on how the variational optimization

is constrained. Without constraints, agents could sample states discontinuously and

uniformly in a way that is equivalent to i.i.d. sampling but is not consistent with

the continuous experiences of embodied agents (Fig. 5.2(A,B)). Hence, we tailor our

assumptions to agents with continuous experiences. Then, to ensure our optimization

produces a distribution over continuous paths, we constrain the volume of states accessible

within any finite time interval by bounding their fluctuations (see Ch. 2.3.3).



171

As we have already seen in Ch. 2.3.4, this constrained variational optimization sur-

prisingly admits an analytical solution for the maximum entropy path distribution. The

derived optimal path distribution is

(5.1) Pmax[x(t)] =
1

Z
exp

[
− 1

2

∫ t

t0

ẋ(τ)TC−1[x(τ)]ẋ(τ)dτ
]
,

where Z is a normalization constant. At every point in space x∗ ∈ X , the matrix C[x∗]

measures temporal correlations locally over an interval of duration ∆t, such that

(5.2) C[x∗] =

∫ ti+∆t

ti

KXX(ti, τ)dτ,

where KXX(t1, t2) is the autocovariance of x(t) at pairs of samples in time evaluated

over a chosen interval, [ti, ti + ∆t] ⊂ T , with a given x(ti) = x∗ (see Ch. 2.3.3). This

distribution describes the trajectories of an optimal agent with minimally correlated paths,

subject to the constraints imposed by continuity of experience. Moreover, Eq. 5.1 is

equivalent to the path distribution of an anisotropic, spatially-inhomogeneous diffusion

process. Thus, minimizing correlations among agent trajectories leads to diffusion-like

exploration, whose properties can actually be analyzed using statistical mechanics (e.g.,

Fig. 2.5). This also means that the sample paths of the optimal agent are Markovian and

ergodic (see Chs. 2.3.4 and 2.5.1 for associated theorems, corollaries, and their proofs).

Unlike alternative RL frameworks, our approach does not assume the Markov property,

but rather enforces it as a property intrinsic to the optimal agent’s path distribution.

Satisfying ergodicity has profound implications for the properties of resulting agents.

Ergodicity is a formal property of dynamical systems that guarantees that the statistics

of individual trajectories are asymptotically equivalent to those of a large ensemble of
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trajectories [30, 181]. Put in RL terms, while the sequential nature of RL agent experiences

can make i.i.d. sampling technically impossible, the global statistics of an ergodic RL agent

are indistinguishable from those of an i.i.d. sampling process. In this sense, ergodic Markov

sampling is the best possible alternative to i.i.d. sampling in sequential decision-making

processes. Beyond resolving the issue of generating i.i.d. samples in RL, ergodicity forms

the basis of many of MaxDiff RL’s theoretical guarantees, as we show in the following

subsections.

When an agent’s trajectories satisfy Eq. 5.1, we describe the agent as maximally

diffusive. However, agents do not realize maximally diffusive trajectories spontaneously.

Doing so requires finding a policy capable of satisfying maximally diffusive path statistics,

which forms the core of what we term MaxDiff RL. While any given policy induces a

path distribution, finding policies that realize maximally diffusive trajectories requires

optimization and learning (Fig. 5.2(D)). To this end, we define:

Pπ[x1:T , u1:T ] =
T−1∏
t=1

p(xt+1|xt, ut)π(ut|xt)

P r
max[x1:T , u1:T ] =

T−1∏
t=1

pmax(xt+1|xt)er(xt,ut),

(5.3)

where we discretized the distribution in Eq. 5.1 as pmax(xt+1|xt), and analytically rederived

the optimal path distribution under the influence of a reward landscape, r(xt, ut) (see

Ch. 2.5.1). Given the distributions in Eq. 5.3, the goal of MaxDiff RL can be framed as

minimizing the Kullback-Leibler (KL) divergence between them—that is, between the

agent’s current path distribution and the maximally diffusive one.
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To draw connections between our framework and the broader MaxEnt RL literature,

we recast the KL-divergence formulation of MaxDiff RL as an equivalent stochastic optimal

control (SOC) problem. In SOC, the goal is to find a policy that maximizes the expected

cumulative rewards of an agent in an environment. In this way, we can express the MaxDiff

RL objective as

(5.4) π∗
MaxDiff = argmax

π
E(x1:T ,u1:T )∼Pπ

[
T−1∑
t=1

γtr̂(xt, ut)

]
,

with γ ∈ [0, 1) and modified rewards given by

(5.5) r̂(xt, ut) = r(xt, ut)− α log
p(xt+1|xt, ut)π(ut|xt)

pmax(xt+1|xt)
,

where α > 0 is a temperature-like parameter we introduce to balance diffusive exploration

and reward exploitation, as we discuss in the following section. With these results in hand,

we may now state and prove one of our main theorems.

Theorem 5.1. (MaxDiff RL generalizes MaxEnt RL) Let the state transition dynamics

due to a policy π be pπ(xt+1|xt) = Eut∼π[p(xt+1|xt, ut)]. If the state transition dynamics are

assumed to be decorrelated, then the optimum of Eq. 5.4 is reached when DKL(pπ||pmax) = 0

and the MaxDiff RL objective reduces to the MaxEnt RL objective.

Proof. Since controllability is central to this proof, we must first formalize and define

a particular notion of controllability in the context of MDPs that was partially introduced

in [182], implicit in the results of [167], and explicitly called out in [36].
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Definition 5.1. The state transition dynamics, p(xt+1|xt, ut), in an MDP, (X ,U , p, r, γ),

are fully controllable when there exists a policy, π : U × X → [0,∞), such that:

(5.6) pπ(xt+1|xt) = Eut∼π(·|xt)[p(xt+1|xt, ut)]

and

(5.7) DKL

(
pπ(xt+1|xt)

∣∣∣∣∣∣ν(xt+1|xt)
)
= 0, ∀t ∈ Z+

for any arbitrary choice of state transition probabilities, ν : X × X → [0,∞).

Thus, a system is fully controllable when it is simultaneously capable of reaching every

state and controlling how each state is reached. In other words, a fully controllable

agent can arbitrarily manipulate its state transition probabilities, pπ(xt+1|xt), by using an

optimized policy to match any desired transition probabilities, ν(xt+1|xt). Equipped with

the definition of full controllability, we may now proceed with our proof.

We will now proceed from the undiscounted MaxDiff RL objective expressed in terms

of a loss function without loss of generality,

π∗
MaxDiff = argmin

π
E(x1:T ,u1:T )∼Pπ

[
T−1∑
t=1

l̂(xt, ut)

]
,

where

l̂(xt, ut) = l(xt, ut) + α log
p(xt+1|xt, ut)π(ut|xt)

pmax(xt+1|xt)
,
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and we may think of l(xt, ut) as −r(xt, ut). Taking this objective we may rearrange terms

in the following way:

EPπ

[
T−1∑
t=1

l̂(xt, ut)

]
= EPπ

[
T−1∑
t=1

l(xt, ut) + α log
p(xt+1|xt, ut)π(ut|xt)

pmax(xt+1|xt)

]

= EPπ

[
T−1∑
t=1

l(xt, ut)

]
+

T−1∑
t=1

E(xt,ut)∼p,π

[
α log

p(xt+1|xt, ut)π(ut|xt)
pmax(xt+1|xt)

]

= EPπ

[
T−1∑
t=1

l(xt, ut) + α log π(ut|xt)

]

+
T−1∑
t=1

E(xt,ut)∼p,π

[
α log

p(xt+1|xt, ut)
pmax(xt+1|xt)

]
.

Now, we proceed by applying Jensen’s inequality to the last term of our expression

above—bringing in the expectation over control actions into the logarithm, noting that

Eut∼π[pmax(xt+1|xt)] = pmax(xt+1|xt), and doing more algebraic manipulations:

≤ EPπ

[
T−1∑
t=1

l(xt, ut) + α log π(ut|xt)

]
+

T−1∑
t=1

Ext∼p

[
α log

Eut∼π[p(xt+1|xt, ut)]
pmax(xt+1|xt)

]

≤ EPπ

[
T−1∑
t=1

l(xt, ut) + α log π(ut|xt)

]
+

T−1∑
t=1

Ext∼p

[
α log

pπ(xt+1|xt)
pmax(xt+1|xt)

]

≤ EPπ

[
T−1∑
t=1

l(xt, ut) + α log π(ut|xt) + αDKL

(
pπ(xt+1|xt)

∣∣∣∣pmax(xt+1|xt)
)]
,(5.8)

where we also used the definition of pπ(xt+1|xt) from Eq. 5.6.

To conclude our proof, we must show that the MaxEnt RL objective emerges from

the MaxDiff RL objective under the assumption that an agent’s state transitions are

decorrelated. We can formalize what decorrelation requires of an agent in one of two

contexts—that of agents with continuous experiences, or in general. Our derivations
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throughout Chs. 2.3.4 and 2.5.1 achieve this in the context of agents with continuous

experiences. Therein, we proved that the least-correlated continuous agent paths uniquely

satisfy maximally diffusive trajectory statistics, which requires that DKL(pπ||pmax) = 0

when there exists an optimizing policy π. Alternatively, completely decorrelating the state

transitions of an agent in general requires being able to generate arbitrary jumps between

states, which requires full controllability (see Definition 5.1). Given full controllability, the

optimum of Eq. 5.8 is also reached when DKL(pπ||pmax) = 0.

Applying the assumption of decorrelated state transitions in either of the two senses

expressed above not only simplifies Eq. 5.8 by removing the KL divergence term but also

by saturating Jensen’s inequality, which recovers the equality between the left and right

hand sides of our equations:

EPπ

[
T−1∑
t=1

l̂c(xt, ut)

]
= EPπ

[
T−1∑
t=1

l(xt, ut) + α log π(ut|xt)

]
,

where we added the subscript c to indicate that this applies under the assumption of

decorrelated state transitions—either in the context of agents with continuous paths (with

maximum diffusivity as a necessary condition) or in general (with full controllability as

a sufficient condition). Putting together our final results, we may now write down the

simplified MaxDiff RL optimization objective with the added assumption of decorrelated

state transitions:

(5.9) π∗ = argmin
π

E(x1:T ,u1:T )∼Pπ

[
T−1∑
t=1

l̂c(xt, ut)

]
,
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with

(5.10) l̂c(xt, ut) = l(xt, ut) + α log π(ut|xt),

or equivalently, we can write Eq. 5.9 as a maximization by replacing the cost with a reward

function:

(5.11) r̂c(xt, ut) = r(xt, ut) + αH(π(ut|xt)),

where we briefly changed our entropy notation, usingH(π(ut|xt)) = S[π(ut|xt)], to highlight

similarities with other results in the literature. Crucially, we recognize this objective as the

MaxEnt RL objective [19, 42], which proves that MaxDiff RL is a strict generalization of

MaxEnt RL to agents with temporally correlated experiences and concludes our proof. □

Crucially, we note that this result does not merely prove that MaxDiff RL is a

generalization of the MaxEnt RL framework to agents with correlations in their state

transitions. It also also proves that maximizing policy entropy cannot decorrelate agent

experiences in general because maximizing policy entropy does not minimize DKL(pπ||pmax)

in Eq. 5.8. In contrast, MaxDiff RL actively enforces path decorrelation at all points in

time. We can think of this intuitively by noting that MaxDiff RL simultaneously accounts

for the effect of the policy and of the temporal correlations induced by agent-environment

dynamics in its optimization (Fig. 5.2(E)). As such, MaxDiff RL typically produces distinct

learning outcomes from MaxEnt RL (Fig. 5.2(F)). Our result also implies that all theoretical

robustness guarantees of MaxEnt RL (e.g., [42]) should be interpreted as guarantees of

MaxDiff RL when state transitions are decorrelated. Moreover, we suggest that many of
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the gaps between MaxEnt RL’s theoretical results and their practical performance may be

explained by the impact of temporal correlations, as we saw in Fig. 5.1.

While these results seem to suggest that model-free implementations of MaxDiff

RL are not feasible, we note that local estimates of the agent’s path entropy can be

learned from observations. This effectively reinterprets temporal correlations as a state-

dependent property of the environment, which is consistent with the way we model

temporal correlations. Similar entropy estimates have been used in model-free RL [183]

and more broadly in the autoencoder literature [184]. For the results presented in this

chapter, we also derived a model-agnostic objective using an analytical expression for the

local path entropy,

(5.12) argmax
π

E(x0:T ,u0:T )∼Pπ

[
T−1∑
t=0

r(xt, ut) +
α

2
log detC[xt]

]
,

whose optimum realizes the same optimum as Eq. 5.4, and where we omitted γ. There are

many ways to express the MaxDiff RL objective, each of which may have implementation-

specific advantages (see Fig. 5.3(A) and Ch. 2.6.2). In this sense, MaxDiff RL is not a

specific algorithm implementation but rather a general problem statement and solution

framework, similar to MaxEnt RL. In this chapter, our MaxDiff RL implementation is

exactly identical to NN-MPPI except for the path entropy term shown above. However,

this simple modification can have a drastic effect on agent outcomes.

5.2.3. Robustness to Initializations in Ergodic Agents

The introduction of an entropy term in Eq. 5.12 means that MaxDiff RL agents must

balance between two aims: Achieving the task and embodying diffusion (Fig. 5.3(A)).
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Figure 5.3. Maximally diffusive RL agents are robust to random
seeds and initializations. (A), Illustration of MuJoCo swimmer envi-
ronment (left panel). The swimmer has 2 degrees of actuation, u1 and
u2, that rotate its limbs at the joints, with tail mass ms and m = 1 for
other limbs. MaxDiff RL synthesizes robust agent behavior by learning
policies that balance task-capability and diffusive exploration (right panel).
In practice this balance is tuned by a temperature-like parameter, α. (B), To
explore the role that α plays in the performance of MaxDiff RL, we examine
the terminal returns of swimmer agents (10 seeds each) across values of α
with ms = 1. Diffusive exploration leads to greater returns until a critical
point (inset dotted line), after which the agent starts valuing diffusing more
than accomplishing the task. (C), Using α = 100, we compared MaxDiff
RL against SAC and NN-MPPI with ms = 0.1. We observe that MaxDiff
RL outperforms comparisons on average with near-zero variability across
random seeds, which is a formal property of MaxDiff RL agents. For all
reward curves, the shaded regions correspond to the standard deviation from
the mean across 10 seeds. For all bar charts, data are presented as mean
values above each error bar, where each error bar represents the standard
deviation from the mean with n = 1000 (100 evaluations over 10 seeds for
each condition). All differences between MaxDiff RL and comparisons within
this figure are statistically significant with P < 0.001 using an unpaired
two-sided Welch’s t-test.
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While asymptotically there is no trade-off between maximally diffusive exploration and task

exploitation, managing the relative balance between these two aims is important over finite

time horizons, which we achieve with a temperature-like parameter, α. In practice, our

entropy term plays a similar role as other exploration bonuses that reward agent curiosity

or provide intrinsic motivation [185–187]. Unlike other bonuses, however, the role of path

entropy can be interpreted through the lens of statistical mechanics. If α is set too high,

the system’s fluctuations can overpower the reward and break the agent’s ergodicity in

ways that resemble the physics of diffusion processes in potential fields [39]. Unfortunately,

predicting where this critical α threshold lies is generally challenging due to its conceptual

ties to the phenomenon of ergodicity-breaking in nonequilibrium processes [188].

Since ergodicity provides many of MaxDiff RL’s desirable properties and guarantees,

tuning the value of α is essential. In Fig. 5.3 and Movie S11, we explore the effect of tuning

α on the learning performance of MaxDiff RL agents in MuJoCo’s swimmer environment.

The swimmer system is comprised of three rigid links of nominally equal mass, m = 1, with

two degrees of actuation at the joints. The agent’s objective is to swim as fast as possible

within a fixed time interval, while being subjected to viscous drag forces (Fig. 5.3(A)). In

Fig. 5.3(B), we vary α across multiple orders of magnitude and examine its impact on the

terminal returns of MaxDiff RL swimmer agents. As we modulate the value of α from

1 to 100, we observe that diffusive exploration leads to greater returns. However, after

α = 100 we cross the critical threshold beyond which the strength of the system’s diffusive

exploration overpowers the reward (see inset dotted line in Fig 5.3(B)), thereby breaking

1https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/

MediaObjects/42256_2024_829_MOESM2_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM2_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM2_ESM.mp4
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the ergodicity of our agents with respect to the underlying potential and performing poorly

at the task—just as predicted by our theoretical framework.

Given a constant temperature of α = 100 that preserves the swimmer’s ergodicity, we

compared the performance of MaxDiff RL to NN-MPPI and SAC across 10 seeds each. To

ensure the task was solvable by all agents, we lowered the mass of the swimmer’s third

link (i.e., its tail) to ms = 0.1. We find that while SAC struggles to succeed within a

million environment interactions, NN-MPPI achieves good performance but with high

variance across seeds. This is in stark contrast to MaxDiff RL, whose performance is

near-identical and competitive across all random seeds (see Fig. 5.3(C) and Movie S22).

Hence, by decorrelating state transitions, our agent was able to exhibit robustness to seeds

and environment randomization beyond what is typically possible in deep RL. Moreover,

since our implementation of MaxDiff RL is identical to that of NN-MPPI, we can attribute

any performance gains and added robustness to the properties of MaxDiff RL’s theoretical

framework.

Robustness to random seeds and environmental randomizations is a highly desirable

feature of deep RL agents [153, 189, 190]. However, guaranteeing such robustness is

challenging because it requires modeling the impact of neural representations on learn-

ing outcomes. Nonetheless, we can provide representation-agnostic guarantees through

the probably approximately correct in Markov decision processes (PAC-MDP) learning

framework [191, 192].

2https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/

MediaObjects/42256_2024_829_MOESM3_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM3_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM3_ESM.mp4
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Definition 5.2. An algorithm A is said to be PAC-MDP if, for any ϵ > 0 and δ ∈ (0, 1),

a policy π can be produced with poly(|X |, |U|, 1/ϵ, 1/δ, 1/(1− γ)) sample complexity that is

at least ϵ-optimal with probability at least 1− δ. In other words, if A satisfies

Pr
(
Vπ∗(x1)− Vπ(x1) ≤ ϵ

)
≥ 1− δ

with polynomial sample complexity for all x1 ∈ X , where

(5.13) Vπ(xt) = Ep,π

[
∞∑
n=1

γnr(xn+t, un+t)

∣∣∣∣∣xt = x

]

is the value function due to policy π under state-transition model p, and Vπ∗(·) is the

optimal value function, then A is PAC-MDP.

Thus, an algorithm is PAC-MDP if it is capable of producing a policy that is at least

ϵ-optimal at least 100× (1− δ)% of the time for any valid choice of ϵ and δ. We note that

this framework is representation-agnostic in the sense that, regardless of whether A involves

any kind of neural network representation, any algorithm that satisfies Definition 5.2

is guaranteed to be at least ϵ-optimal. Under this framework, we can provide formal

robustness guarantees.

Theorem 5.2. (MaxDiff RL agents are robust to random seeds) If there exists a

PAC-MDP algorithm A with policy πmax for the MaxDiff RL objective (Eq. 5.4), then the

Markov chain induced by πmax is ergodic, and A will be asymptotically ϵ-optimal regardless

of initialization.

Proof. This theorem follows directly from the ergodicity of maximally diffusive

trajectories (which we proved in Corollary 2.1.2 and Theorem 2.2), some basic facts
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about MDPs [29], and the application of Birkhoff’s ergodic theorem [193] onto our

definition of PAC-MDP (Definition 5.2). First, since A is capable of producing an ϵ-

optimal policy, πmax, we take DKL(pπmax||pmax) ≈ 0 for some choice of ϵ, given that

pπmax(xt+1|xt) =
∫
U p(xt+1|xt, ut)πmax(ut|xt)dut. Then, it is well-known that any given

policy in an MDP gives rise to a Markov chain on the state-space of the MDP [29].

Naturally, the properties of the policy-induced Markov chain depend on the properties of

the resulting state transition kernel (e.g., pπ(xt+1|xt)).

Let {xt}t∈N be a Markov chain with state transition properties determined by

pπmax(xt+1|xt). Because we know that DKL(pπmax||pmax) ≈ 0, the Markov chain described

by pπmax(xt+1|xt) is ergodic (per Theorem 2.2) with invariant measure ρ. To proceed

further, we will now restate Birkhoff’s well-known ergodic theorem [30, 193].

Theorem 5.3. (Birkhoff’s ergodic theorem) Let {xt}t∈N be an aperiodic and irreducible

Markov process on a state space X with invariant measure ρ and let f : X → R be any

measurable function with E[|f(x)|] <∞. Then, one has

(5.14) lim
T→∞

1

T

T∑
t=1

f(xt) = Ex1∼ρ[f(x1)]

almost surely.

In other words, Birkhoff’s ergodic theorem states the the time-average of any function of

an ergodic Markov chain is equal to its ensemble average.
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Now, we return to the definition of PAC-MDP to slightly manipulate the expression:

Pr
(
Vπ∗(x1)− Vπmax(x1) ≤ ϵ

)
≥ 1− δ

Ex1∼ρ
[
1{Vπ∗(x1)− Vπmax(x1) ≤ ϵ}

]
≥ 1− δ,

where 1{·} denotes an indicator function. In other words, to be PAC-MDP is equivalent

to being at least ϵ-optimal on average at least 100× (1− δ)% of episodes. To conclude

our proof, note that

f(xt) = 1{Vπ∗(xt)− Vπmax(xt) ≤ ϵ}

is a bounded observable and, as a result, Birkhoff’s theorem can be applied onto it.

Lastly, let {xt}t∈N and {x′t}t∈N both be ergodic Markov chains with identical transition

kernels given by pπmax , but with different initial conditions x1, x′1 ∈ X . Then, since

Birkhoff’s ergodic theorem guarantees that the time-averages of observables from {xt}t∈N

and {x′t}t∈N will converge to the same unique ensemble average over the invariant measure

ρ (Theorem 5.3), the following is true:

lim
T→∞

1

T

T∑
t=1

|f(xt)− f(x′t)| = 0

for any x1, x′1 ∈ X almost surely. This proves that any PAC-MDP algorithm is guaranteed

to be robust to random seeds and environmental initializations if the underlying Markov

chain induced by the policy is ergodic, which concludes our proof. □

Thus, since maximally diffusive agents are ergodic, any two arbitrary initializations will

asymptotically achieve identical learning outcomes, which implies robustness to random
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seeds and environmental stochasticity. Despite excluding neural representations from our

analysis, Fig. 5.3(C) suggests that our guarantees hold empirically.

5.2.4. Zero-Shot Generalization Across Embodiments

When agents can find optimal policies, their dynamics become indistinguishable from an

ergodic diffusion process. In doing so, the MaxDiff RL objective (see Eq. 5.5) reduces the

influence of agent dynamics on performance. This suggests that successful MaxDiff RL

policies may exhibit favorable generalization properties across agent embodiments. To

explore this possibility, as well as the robustness of MaxDiff RL agents to variations in

their neural representations, we devised a transfer experiment in the MuJoCo swimmer

environment. We designed two variants of the swimmer: One with a heavy, less controllable

tail of ms = 1, and another with a light, more controllable tail of ms = 0.1 (Fig. 5.4(A)).

We trained two sets of representations for each algorithm. One set was trained with the

light-tailed swimmer, and another set was trained with the heavy-tailed swimmer. Then,

we deployed and evaluated each set of representations on both the swimmer variant that

they observed during training, as well as its counterpart. Our experiment’s outcomes

are shown in Fig. 5.4(B,C), where the results are categorized as “baseline” if the trained

and deployed swimmer variants match, or “transfer” if they were swapped. The baseline

experiments validate other results shown throughout the chapter: All algorithms benefit

from working with a more controllable system whose dynamics induce weaker temporal

correlations (see Fig. 5.4(B) and Movie S23). However, as MaxDiff RL is the only approach

3https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/

MediaObjects/42256_2024_829_MOESM3_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM3_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM3_ESM.mp4
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Figure 5.4. Trained system embodiment determines deployed system
performance. (A), Two variants of the MuJoCo swimmer environment:
One with ms = 1 and one with ms = 0.1. As a baseline, we deploy learned
representations on the same swimmer variant trained on. Then, we carry out
a transfer experiment where the trained and deployed swimmer variants are
swapped. (B), Baseline experiments confirm previous results: All algorithms
benefit from a more controllable swimmer. (C), Both NN-MPPI and SAC
performance degrades when deployed on a more controllable system than
was trained on, which is undesirable. In contrast, MaxDiff RL benefits
from the “Heavy-to-Light” transfer and we also observe that MaxDiff RL
performance further increases in the “Light-to-Heavy” transfer experiment.
For all bar charts, data are presented as mean values above each error bar,
where each error bar represents the standard deviation from the mean with
n = 1000 (100 evaluations over 10 seeds for each condition). All differences
between MaxDiff RL and comparisons within this figure are statistically
significant with P < 0.001 using an unpaired two-sided Welch’s t-test.



187

taking temporal correlations into account, it is the only method that remains task-capable

with a heavy-tailed swimmer.

For the transfer experiments, all of the learned neural representations of the reward

function, control policy, and agent dynamics were deployed on the swimmer variant that

was not seen during training (Fig. 5.4(A)). First, we note that for both NN-MPPI and

SAC representation transfer leads to degrading performance across the board. This is the

case even when the swimmer variant they were deployed onto was more controllable, which

is counterintuitive and undesirable behavior. In contrast, our MaxDiff RL agents can

actually benefit and improve their performance when deployed on the more controllable

swimmer variant, as desired (see “Heavy-to-Light” transfer in Fig. 5.4(C) and Movie S34).

In other words, as the task becomes easier in this way, we can expect the performance of

MaxDiff RL agents to improve.

A more surprising result is the performance increase in MaxDiff RL agents between

the baseline heavy-tailed swimmer and the “Light-to-Heavy” transfer swimmer (Fig. 5.4(c)

and Movie S35). We found that training with a more controllable swimmer increased the

performance of agents when deployed on a heavy-tailed swimmer, showing that system

controllability during training matters more to overall performance than the particular

embodiment of the deployed system. This kind of zero-shot generalization [194] from an

easier task to a more challenging task is reminiscent of results seen in RL agents trained

via curriculum learning [195], as well as of the incremental learning dynamics of biological

systems during motor skill acquisition [196]. However, here it emerges spontaneously from

4https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/

MediaObjects/42256_2024_829_MOESM4_ESM.mp4
5https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/

MediaObjects/42256_2024_829_MOESM4_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM4_ESM.mp4
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the properties of MaxDiff RL agents. In part, this occurs because greater controllability

leads to improved exploration, which increases the diversity of data observed during

training.
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Figure 5.5. Maximally diffusive RL agents are capable of single-shot
learning. (A), Illustration of MuJoCo ant environment. (B), Typical
algorithms learn across many different initializations and deployments of an
agent, which is known as multi-shot learning. In contrast, single-shot learning
insists on a single task attempt, which requires learning through continuous
deployments. Here, we prove that MaxDiff RL agents are equivalently
capable of single-shot and multi-shot learning in a broad variety of settings.
(C), Single-shot learning depends on the ability to generate data samples
ergodically, which MaxDiff RL guarantees when there are no irreversible state
transitions in the environment. (D), Single-shot learning in the swimmer
MuJoCo environment. We find that MaxDiff RL achieves robust performance
comparable to its multi-shot counterpart. (E), In contrast to the swimmer,
the MuJoCo ant environment contains irreversible state transitions (e.g.,
flipping upside down) preventing ergodic trajectories. Nonetheless, MaxDiff
RL remains state-of-the-art in single-shot learning. Note that we report
returns over a window of 1000 steps in analogy to our multi-shot results,
where episodes consist of 1000 environment interactions. For all reward
curves, the shaded regions correspond to the standard deviation from the
mean across 10 seeds. For all bar charts, data are presented as mean values
above each error bar, where each error bar represents the standard deviation
from the mean and the data distribution is plotted directly (n = 10 seeds for
each condition). All differences between MaxDiff RL and comparisons within
this figure are statistically significant with P < 0.001 using an unpaired
two-sided Welch’s t-test.

5.2.5. Single-Shot Learning in Ergodic Agents

When agents are deployed in the real world, they face situations at test time that were

never encountered during training. Since exhaustively accounting for every possible

scenario is infeasible, agents capable of real-time adaptation and learning during individual

deployments are desirable [154]. Most RL methods excel at episodic multi-shot learning

over the course of several deployments (Fig. 5.5(B)), where randomized instantiations

of a given task and environment passively provide a kind of variability that is essential

to the learning process [197]. However, episodic problems of this kind are very rare in
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real-world applications. For this reason, there is a need for methods that allow agents

to perform a task successfully within a single trial—or, in other words, for methods that

enable single-shot learning.

Single-shot learning concerns learning in non-episodic environments over the course of

a single task attempt, similar to the “single-life” RL setting considered in [198]. Despite

the challenges associated with studying the behavior of agents based on neural network

representations, the ergodic properties of MaxDiff RL enables one to provide representation-

agnostic guarantees on the feasibility of single-shot learning through the PAC-MDP learning

framework.

Theorem 5.4. (MaxDiff RL agents can learn in single-shot deployments) If there

exists a PAC-MDP algorithm A with policy πmax for the MaxDiff RL objective (Eq. 5.4),

then the Markov chain induced by πmax is ergodic, and any individual initialization of A

will asymptotically satisfy the same ϵ-optimality as an ensemble of initializations.

Proof. The proof of this theorem is simple given the proof to Theorem 5.2. Once

again, let {xt}t∈N be an ergodic Markov chain with state transition statistics given by

pπmax and let

f(xt) = 1{Vπ∗(xt)− Vπmax(xt) ≤ ϵ}

be an observable. Then, through a straightforward application of Birkhoff’s theorem

(Theorem 5.3) we have

lim
T→∞

1

T

T∑
t=1

1{Vπ∗(xt)− Vπmax(xt) ≤ ϵ} = Ex1∼ρ[1{Vπ∗(x1)− Vπmax(x1) ≤ ϵ}],
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which proves that any individual initial condition will satisfy the ensemble average. In

turn, we have

Pr
(
Vπ∗(x0)−Vπmax(x0) ≤ ϵ

)
≥ 1− δ =⇒ lim

T→∞

1

T

T∑
t=0

1{Vπ∗(xt)−Vπmax(xt) ≤ ϵ} ≥ 1− δ

almost surely, which proves that an algorithm that is PAC-MDP during multi-shot (episodic)

learning is guaranteed to be PAC-MDP during single-shot (non-episodic) learning if the

underlying Markov chain induced by the policy is ergodic, which concludes our proof. □

Thus, any MaxDiff RL agent capable of solving a task in a multi-shot fashion (in the

PAC-MDP sense) is capable of solving the same task in a single-shot fashion. Since

any two MaxDiff RL agents will asymptotically achieve identical learning outcomes, any

individual MaxDiff RL agent will also achieve identical learning outcomes as an ensemble.

We note that this proof also clarifies why ergodic sampling along continuous Markovian

trajectories is the best possible alternative to i.i.d. sampling—that is, because Birkhoff’s

theorem guarantees that observables computed from these correlated experiences will be

(asymptotically) interchangeable from an i.i.d. computation of same observables. Since

ergodicity is central to this proof, we expect its guarantees to fail when ergodicity is broken

by either the agent or the environment.

Figure 5.5 demonstrates the single-shot learning capabilities of MaxDiff RL agents,

and explores what happens when ergodicity is broken by the topological properties of

the environment. Here, we examine both the MuJoCo swimmer and ant environments

(Fig. 5.5(A)). The primary difference between these two environments is the existence of

irreversible state transitions that can violate the ergodicity requirement of our single-shot

learning guarantees topologically (Fig. 5.5(C)), which have been previously referred to as
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“sink states” in the literature [197]. Unlike the swimmer, the ant is capable of transitioning

into such states by flipping upside down, thereby breaking ergodicity. Irreversible state

transitions are common in real-world applications because they can arise as a result of

unsafe behavior, such as a robot breaking or malfunctioning during learning. While such

transitions can be prevented in principle through the use of safety-preserving methods [47,

199, 200], we omit their implementation to illustrate our point. As expected, the MaxDiff

RL single-shot swimmer is capable of learning in continuous deployments (see Fig. 5.5(D)

and Movie S46), retaining the same robustness of its multi-shot counterpart in Fig. 5.3(C),

and achieving similar task performance. Despite ergodicity-breaking in the single-shot ant

environment, MaxDiff RL still leads to improved outcomes over NN-MPPI and SAC, as in

Fig. 5.5(E), where we plot the final distance traveled to ensure that no reward hacking took

place. However, the loss of ergodicity leads to an increase in the variance of single-shot

MaxDiff RL agent performance, which we expect as a result of our robustness guarantees

no longer holding.

5.3. Discussion

Throughout this chapter, we have highlighted the ways in which RL is fragile to temporal

correlations intrinsic to many sequential decision-making processes. We introduced a

framework based on the statistical mechanics of ergodic processes to overcome these

limitations, which we term MaxDiff RL. Our framework offers a generalization of the

current state-of-the-art in RL and addresses many foundational issues holding back the field:

The ergodicity of MaxDiff RL agents enables data acquisition that is indistinguishable from

6https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/

MediaObjects/42256_2024_829_MOESM5_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-024-00829-3/MediaObjects/42256_2024_829_MOESM5_ESM.mp4
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i.i.d. sampling, performance that is robust to seeds, and single-shot learning. Through its

roots in statistical physics, our work forms a starting point for a more scientific study of

embodied RL—one in which falsifiable predictions can be made about agent properties

and their performance.

However, much more work at the nexus of physics, learning, and control remains to be

done in pursuit of this goal. For one, approaches grounded in statistical physics for tuning

or annealing temperature-like parameters during learning will be necessary to achieve

effective exploration without sacrificing agent performance [201]. Additionally, control

techniques capable of enforcing ergodicity in the face of environmental irreversibility are

needed to guarantee desirable agent properties like robustness to random seeds in complex

problem settings [181]. Beyond RL, our work also has the potential to open new lines

of interdisciplinary inquiry in areas such as biological learning and animal behavior. For

example, the importance of ergodicity to animal behaviors like foraging and tracking has

been extensively studied [202]. As such, our work presents an avenue for studying these

behaviors within an RL framework that is sensitive to physical embodiment. For biological

motor learning, our findings also suggest that controllability may be a promising frame of

reference for studying motor skill acquisition [203]. More broadly, our work is particularly

well-suited to applications in soft matter systems where the impact of correlations may

in fact be impossible to avoid entirely [7]. Taken together, our results present a major

advance towards transparently understanding and reliably synthesizing complex behavior

in embodied decision-making agents, which will be crucial to the long-term viability of

deep RL as a field.
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The culmination of this chapter concludes our motivation of robot thermodynamics

across many different areas of the field of robotics. By taking into account the path

continuity of RL agents, we were able to develop a framework that overcomes violations

of the i.i.d. property, provides robustness guarantees, and makes learning in single-shot

deployments possible—all while achieving state-of-the-art performance at benchmarks.

In the final chapter of this thesis, we will present an outlook towards potential future

directions for this body of work, and remark upon other dimensions of this work being

currently explored.
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CHAPTER 6

Conclusions

This dissertation has presented a novel framework for the design, analysis, and control

of embodied autonomy, drawing inspiration from the principles of statistical mechanics and

thermodynamics. By embracing uncertainty and nondeterminism in the modelling and

control of complex systems, we developed a flexible set of tools that enable us to reason

about agent behavior in terms of path distributions. Path distributions provided us with

a means of parsimoniously reasoning about agent embodiment and decision-making as two

sides of the same coin—as elements that shape the structure of an agent’s path distribution.

As illustrated throughout the chapters in this manuscript, this approach, which we term

“robot thermodynamics,” produced significant advances to the state-of-the-art in robotics

across many areas of the field.

In Ch. 2, we laid the mathematical foundations of robot thermodynamics, introducing

the concept of path distributions and demonstrating how they can be inferred and manip-

ulated using the principle of maximum caliber. We derived a novel, unpublished result on

the steady-state occupancy statistics of a broad class of stochastic processes, recovering

the low-rattling selection principle. Additionally, we presented an original derivation of

Pontryagin’s maximum principle from the principle of maximum caliber, establishing

connections between KL-control and stochastic optimal control in the process. In Ch. 3,

we explored the application of our framework to the prediction of self-organization in

active and robotic matter, introducing and experimentally validating a Boltzmann-like
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principle for predicting the steady-state behavior of complex systems. Chapter 4 delved

into the design of emergent behaviors in robotic microsystems, analyzing the complex

dynamics of active colloidal microparticles and demonstrating a novel thermodynamic

mechanism for asymmetry-induced order. Finally, in Ch. 5, we introduced maximum

diffusion reinforcement learning (MaxDiff RL), a framework derived from the principles of

robot thermodynamics that provably decorrelates agent experiences and enables single-shot

learning in continuous deployments.

The results presented in this dissertation represent a significant step forward in the

quest for robust, adaptable, and life-like robotic autonomy. In order to do so, we stepped

away from the deterministic ideals of precision engineering and embraced the uncertain

and unpredictable nature of real world. Path distributions and statistical physics present

a promising avenue for rigorously examining the way in which agent properties and

their decision-making can influence their behavior and environments. We believe the

principles outlined in this thesis present a promising path towards an future in which

an understanding of embodiment leads to the development of more safe, reliable, and

adaptable autonomous agents.
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particles. Nature Communications 9, 5156 (2018).

44. Srinivasan, M. & Ruina, A. Computer optimization of a minimal biped model

discovers walking and running. Nature 439, 72–75 (2006).

45. Ansari, A. R. & Murphey, T. D. Sequential Action Control: Closed-Form Optimal

Control for Nonlinear and Nonsmooth Systems. IEEE Transactions on Robotics 32,

1196–1214 (2016).

46. Williams, G. et al. Information theoretic MPC for model-based reinforcement learning.

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 1714–1721 (2017).

47. Ames, A., Grizzle, J. & Tabuada, P. Control Barrier Function based Quadratic

Programs with Application to Adaptive Cruise Control in 2014 IEEE Conference on

Decision and Control (CDC) (2014).

48. Kliemann, W. Recurrence and invariant measures for degenerate diffusions. Annals

of Probability 15, 690–707 (1987).



202

49. Bou-Rabee, N. & Owhadi, H. Ergodicity of Langevin Processes with Degenerate

Diffusion in Momentums. International Journal of Pure and Applied Mathematics

45, 475–490 (2008).

50. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature

440, 297–302. issn: 1476-4687 (2006).

51. Kardar, M. Statistical Physics of Particles (Cambridge University Press, 2007).

52. Corte, L., Chaikin, P., Gollub, J. P. & Pine, D. Random organization in periodically

driven systems. Nature Physics 4, 420–424 (2008).

53. Grosberg, A. & Joanny, J.-F. Nonequilibrium statistical mechanics of mixtures of

particles in contact with different thermostats. Physical Review E 92, 032118 (2015).

54. Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving

microtubules. Nature 483, 448–452. issn: 1476-4687 (2012).

55. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens.

Matter Phys. 1, 323–345 (2010).

56. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. & Landim, C. Macroscopic

fluctuation theory. Reviews of Modern Physics 87, 593 (2015).

57. Paoluzzi, M., Maggi, C., Marini Bettolo Marconi, U. & Gnan, N. Critical phenomena

in active matter. Phys. Rev. E 94, 052602 (5 2016).

58. Speck, T. Stochastic thermodynamics for active matter. EPL (Europhysics Letters)

114, 30006 (2016).

59. Chvykov, P. & England, J. Least-rattling feedback from strong time-scale separation.

Phys. Rev. E 97, 032115 (3 2018).



203

60. Cates, M. E. & Tailleur, J. Motility-Induced Phase Separation. Annual Review of

Condensed Matter Physics 6, 219–244 (2015).

61. Aguilar, J. et al. Collective clog control: Optimizing traffic flow in confined biological

and robophysical excavation. Science 361, 672–677. issn: 0036-8075 (2018).

62. Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-

robot swarm. Science 345, 795–799 (2014).

63. Werfel, J., Petersen, K. & Nagpal, R. Designing Collective Behavior in a Termite-

Inspired Robot Construction Team. Science 343, 754–758. issn: 0036-8075 (2014).

64. Li, S. et al. Particle robotics based on statistical mechanics of loosely coupled

components. Nature 567, 361–365. issn: 1476-4687 (2019).

65. Vásárhelyi, G. et al. Optimized flocking of autonomous drones in confined environ-

ments. Science Robotics 3 (2018).

66. Mayya, S., Notomista, G., Shell, D., Hutchinson, S. & Egerstedt, M. Non-Uniform

Robot Densities in Vibration Driven Swarms Using Phase Separation Theory. IEEE

International Conference on Intelligent Robots and Systems (IROS) (2019).

67. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proceedings

of the National Academy of Sciences 103, 19678–19682. issn: 0027-8424 (2006).

68. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry (Elsevier, 1992).

69. Landauer, R. Statistical physics of machinery: forgotten middle-ground. Physica A:

Statistical Mechanics and its Applications 194, 551–562. issn: 0378-4371 (1993).

70. Landauer, R. Inadequacy of entropy and entropy derivatives in characterizing the

steady state. Phys. Rev. A 12, 636–638 (2 1975).



204

71. Chvykov, P. On typicality and adaptation in driven dynamical systems PhD thesis

(Massachusetts Institute of Technology, 2019).

72. Calvert, J. & Randall, D. A local-global principle for nonequilibrium steady states

2024. arXiv: 2311.10957 [math.PR]. https://arxiv.org/abs/2311.10957.

73. Redner, G. S., Hagan, M. F. & Baskaran, A. Structure and dynamics of a phase-

separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013).

74. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living

Crystals of Light-Activated Colloidal Surfers. Science 339, 936–940. issn: 0036-8075

(2013).

75. Savoie, W. et al. A robot made of robots: Emergent transport and control of a

smarticle ensemble. Science Robotics 4 (2019).

76. Kedia, H., Pan, D., Slotine, J.-J. & England, J. L. Drive-specific selection in multi-

stable mechanical networks. The Journal of Chemical Physics 159, 214106. issn:

0021-9606 (2023).

77. Epstein, T. & Fineberg, J. Control of Spatiotemporal Disorder in Parametrically

Excited Surface Waves. Phys. Rev. Lett. 92, 244502 (24 2004).

78. Karani, H., Pradillo, G. E. & Vlahovska, P. M. Tuning the Random Walk of Active

Colloids: From Individual Run-and-Tumble to Dynamic Clustering. Phys. Rev. Lett.

123, 208002 (20 2019).

79. Goldman, D. I., Shattuck, M., Moon, S. J., Swift, J. & Swinney, H. L. Lattice

dynamics and melting of a nonequilibrium pattern. Phys. Rev. Lett. 90, 104302

(2003).

https://arxiv.org/abs/2311.10957
https://arxiv.org/abs/2311.10957


205

80. Sigmund, O. Systematic design of metamaterials by topology optimization in IUTAM

Symposium on Modelling Nanomaterials and Nanosystems (2009), 151–159.
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