
Materializing Autonomy in Soft Robots across Scales

Thomas A. Berrueta,* Todd D. Murphey, and Ryan L. Truby*

1. Motivation

Biological organisms and their extraordinary capabilities have
been a persistent source of inspiration in robotics. Across scales,
the autonomy of living organisms is enabled by their very bodies
and tissues—not just their cognitive abilities. The multifunction-
ality of these soft and compliant tissues provides a passive adapt-
ability and robustness that engineers struggle to replicate in

autonomous robots today.[1,2] For example,
even single-celled organisms such as slime
molds are capable of complex navigational
tasks like localization[3] and planning.[4]

These tiny organisms can use their soft
bodies to simultaneously facilitate locomo-
tion,[5] persistent memory,[6] and computa-
tion.[7,8] This pattern persists in larger
organisms as well: by leveraging the
mechanics of their musculoskeletal sys-
tems, vertebrates can also achieve a kind
of physical intelligence[9,10] that frees up
cognitive resources for higher-level reason-
ing.[1,11] Soft robotics was founded with the
explicit purpose of designing agents
capable of similarly leveraging this bodily,
physical intelligence to simplify their envi-
ronmental interactions and lessen their
computational burdens in a life-like man-
ner.[12] Yet, in spite of much progress trans-
lating advances in soft matter engineering
into bioinspired functionalities, the inte-
gration of such materials into soft robots
with truly bioinspired autonomy remains
largely unrealized.

At the heart of this roadblock lies
soft robot control. Soft robotics has chiefly focused on the
fabrication[13,14] and actuation[15,16] of functional, deformable
materials,[17–19] driving substantial innovations in each of these
areas. By comparison, there have been fewer developments in
soft robot perception,[20,21] learning,[22,23] and control.[24–26]

Technical challenges arising from the underactuated, nonlinear,
and hysteretic nature of soft robot dynamics, as well as the inten-
sive sensory and computational demands of modern control
architectures, have produced an information-processing bottle-
neck in soft robotics. Similar trends have emerged for small-scale
soft robot design, with advances focusing on novel materials[27,28]

and actuation mechanisms.[29] Moreover, at decreasing length
scales soft robots and active matter systems can be too small
to host standard circuitry and power sources, making any on-
board computation prohibitively challenging.[30–32] Despite these
fundamental engineering challenges, the integration of informa-
tion-processing within physically intelligent material substrates
is crucial to realizing autonomy in soft robots at all scales.[33–36]

To make matters worse, soft robotic control strategies do
not—and will likely never—generalize in the same way as tradi-
tional robot control. To be physically intelligent, soft bodies must
be well-adapted to their environmental niches, requiring their
control strategies to adapt in kind. This is to say that different
kinds of soft robots will need different control approaches.
While some researchers do not attempt to overcome current
information-processing bottlenecks, others have faced the
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The impressive capabilities of living organisms arise from the way autonomy is
materialized by their bodies. Across scales, living beings couple computational or
cognitive intelligence with physical intelligence through body morphology,
material multifunctionality, and mechanical compliance. While soft robotics has
advanced the design and fabrication of physically intelligent bodies, the inte-
gration of information-processing capabilities for computational intelligence
remains a challenge. Consequently, perception and control limitations have
constrained how soft robots are built today. Progress toward untethered
autonomy will require deliberate convergence in how the field codevelops new
materials, fabrication methods, and control strategies for soft robots. Here, a new
perspective is put forward: that researchers should use tasks alone to impose
material and information constraints on soft robot design. A conceptual
framework is proposed for a task-first design paradigm that sidesteps limitations
imposed by control strategies. This framework allows emergent synergies
between material and information processing properties of soft matter to be
readily exploited for task-capable agents. Particular attention is paid to the scale
dependence of solutions. Finally, an outlook is presented on emerging research
opportunities for achieving autonomy in future soft robots as large as elephant
trunks and as small as paramecia.
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challenge of soft robotic control head-on. However, these
researchers have tended to limit themselves to only building soft
robots that they already know how to control. This approach,
which we term control-first design, entails restricting the design
of robot bodies to those controllable through well-known means,
such as those characterizable by analytical models (e.g., piece-
wise constant or polynomial curvatures[37–39]) or tractable with
finite element analyses.[40–42] Control-first design has led to
the production of soft robots with limited usefulness and
task-capability. Thus, the stringent information-processing con-
straints of soft robots have sparked contentious discussions in
the field: how do we best proceed with developing new soft
robotic control schemes?

To help guide the field toward the development of useful soft
agents, this Perspective presents a conceptual framework for a
task-first design paradigm for soft robotics. At its core, our
Perspective advocates for this task-first approach to highlight that
the challenges of soft robot control are directly tied to the soft
robot bodies we can actually build. Our framework preempts
imposing unnecessarily restrictive conditions on soft robots
and their capabilities by starting the design process first with task
specification rather than controller design. In this sense, our
approach seeks to address the potential consequences of adher-
ing to current trends in soft robot design that have led the field
toward information-processing bottlenecks. Our framework is
intentionally adaptable and system agnostic to guide the design
of any soft robot at any scale, from walking soft robots to bioins-
pired active matter systems. We also provide soft robot designers
generalized considerations for control approaches at large (1 cm–
1m) and small (1 cm–1 μm) length scales once a task-capable
robot body has been built. We intend for researchers to use this
framework not as an instruction manual or methodology, but as a

guide when starting new projects or conceiving new research
directions in soft robotics.

To motivate the adoption of our proposed framework, we first
discuss in Section 2 how tasks naturally impose material-based
and information-based requirements on soft robots that vary by
scale. To support our claim, we provide examples of the scale-
dependent consequences of control-first soft robot design in
Section 2.1. In Section 2.2, we discuss how a task-first approach
to autonomous soft robots is naturally supported when morphol-
ogy informs controller design. From task requirements, we sug-
gest promising research directions to facilitate the exploration of
soft robot designs in Section 3. We believe this will enable the
discovery of agents that can be fabricated to exploit emergent syn-
ergies between body dynamics and control architectures, thereby
surpassing individual subsystem limitations to achieve greater
task-capability. Overall, we hope this Perspective serves as a call
to action for soft robotics researchers to begin creating agents
with truly autonomous behaviors by placing task specifications
at the forefront of the design process.

2. Tasks as the Starting Point for Design

The root of the problem with control-first design is that it
imposes ad-hoc limitations on robot bodies. By envisioning a
space of possible robot designs, as in Figure 1, we can picture
how designing a body to meet a priori control demands need-
lessly shrinks the design space of task-capable robots. Control-
first design does this by first selecting one of a few well-estab-
lished soft robot control strategies. By necessity, these control
strategies must make assumptions about the morphologies of
soft robots that they can be deployed on. Then, these assump-
tions restrict the space of soft robot designs to a small subset

Figure 1. Designing autonomous, task-capable soft robots across scales. The diagrams illustrate the impact of control-first and task-first design in soft
robotics. A) Control-first design shrinks the space of viable task-capable soft robots by imposing information-processing constraints on the design of soft
robot bodies. These constraints lead to the fabrication of soft robots whose morphologies adhere to the assumptions of existing soft control architectures
(see region outlined in red). B) By prioritizing task requirements from the start, task-first design leads to a greater set of task-capable soft robots (see
region outlined in red). Task-first design relieves roboticists from constraining designs a priori, while facilitating the design of soft robots that exploit
synergies between material and information-processing properties to achieve their task. While valid controllers may not always be available for every
possible combination of task and body, this approach relies on the suggestion that designing a bespoke controller for a particular application is typically
more feasible than developing novel materials and fabrication methods to make robot bodies that suit the assumptions of a given control strategy.
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(see the red outlined region in Figure 1A). Additionally, these
morphological restrictions limit materials and fabrication meth-
ods to those compatible with the control strategy and its associ-
ated assumptions. From the set of designs compatible with the
chosen control and fabrication strategies, candidate robot
designs are selected with respect to their task-capability. This
design approach leads to an overly-conservative filtration of viable
designs (see Figure 1A). In doing so, we remove from consider-
ation many designs with potential for task-capability that take
advantage of synergies between physical and computational
design elements. If we were to start by selecting a task and dis-
tilling its requirements, we could avoid imposing unnecessary
restrictions on the design process and ensure that resulting soft
robots are task-capable from the very beginning (see Figure 1B).
This is precisely what task-first design seeks to achieve.

To demonstrate this idea and the trade-offs of control-first
versus task-first design, we consider designing a prototypical soft
robotic arm in Figure 2 as an illustrative example. Continuum
arms like these have emerged as a popular testbed for developing
soft robot controllers. Suppose we define the task for this soft
robot as reaching into an opaque paper bag and grasping an
object inside (Figure 2A). A task-first designer may conclude that
the task requires dexterous maneuverability of the manipulator
and proprioceptive tactile sensors distributed throughout the soft
robot. In the absence of co-design technologies (see Section 3.1),
the task-first design process proceeds sequentially with actuator
selection, as actuation is a key determinant of task-capability.
Suitable sensing methods to meet the task’s information require-
ments would then be selected. The actuators and sensors would
then be integrated into a design to give a soft robot its morphol-
ogy. The designer would finally develop a suitable controller to
complete the task. In contrast, starting the design process with a
controller restricts the selection and actuators and sensors to
those that best meet the control strategy’s needs (Figure 2B).
For example, feedback for a piecewise-constant curvature
(PCC) controller, a popular option for continuum arms, is more
easily provided by motion capture than integrated sensors. Not
only is the soft robot constrained to a controlled environment
equipped with cameras in this scenario, but also, additionally,
the task of grabbing an object out of a bag is now made more
difficult since the task requires a loss of line-of-sight to camera
fiducials on the robot. As a result, while choosing an exterocep-
tive sensing strategy met the needs of the controller, it produced
a task-incapable design. This is just one illustration of how con-
trollers do not tend to make a good starting point for soft robot
design.

Since all of robotics is concerned with the ways in which
energy and information exchanges between machines and their
environments can be leveraged toward tasks,[43] it is therefore
sensible to design autonomous, task-capable robots by beginning
with the task itself (see Figure 1B and 2A). While one may imag-
ine many different approaches to soft robot design, our proposed
methodology seeks to directly address the shortcomings of
control-first design. Task specifications establish requirements
that define the desired operational properties of a soft agent.
These requirements may capture appropriate device length
scales,[44] on-board power needs,[45] operating temperatures,[46–50]

sensing modalities,[51] compatible chemistries,[52,53] ranges of
actuation,[54] andmore. These requirements reflect environmental

and functional needs that inform subsequent design choices. They
also set bounds for the selection of appropriate materials and
manufacturing methods capable of incorporating the necessary
components for mediating exchanges of energy, information,
and physical interactions. Finally, tasks assign clear success crite-
ria for specifying machine behavior.

Once task requirements are identified, we suggest that every-
thing downstream of the task ought to be flexible. This is to say
that only the task itself may act as a filter on the space of possible
designs, and no prior choice of controller or robot morphology
should further restrict task-capability (see Figure 1B). This
expands the space of viable designs—as illustrated by the relative
sizes of red outlined regions in Figure 1—and clears the way for
robots capable of exploiting emergent synergies between closely
integrated physical and computational design elements. Hence,
an agent’s morphological makeup and its information-process-
ing capabilities should be jointly designed to best accomplish
the task.[55–60] It is important to note that for a given choice of
task and body plan, one is not always guaranteed to find a valid
controller. In this sense, a task-first approach presumes that
designing an application-specific controller is typically more fea-
sible than devising novel materials and fabrication methods to
suit the morphological requirements of a given control strategy.
We illustrate this fact in the sequence of Figure 2A and in the
differently-sized arrows of Figure 1B, which indicate the relative
challenge of having morphology influence control strategies and
vice versa. Methods allowing robot bodies and controllers to be
simultaneously co-designed with respect to a task present a
promising path forward to resolving this issue.[61–63] However,
as we discuss in Section 3, these remain early in their

Figure 2. Control-first versus task-first design. The example here considers
continuum soft robot arms because of their prevalence across application
domains in the field. A) Illustration of a typical task-first design process. In
all cases, the task is to grasp an apple resting inside of an opaque paper
bag. Actuation and sensing strategies are designed to meet task require-
ments. The result is a task-capable robot. B) Illustration of a typical control-
first design process. Independently of the task, the soft robot is designed
for use with a piecewise-constant curvature (PCC) controller. Feedback for
the controller is provided by exteroceptively with cameras, and the actua-
tors are designed to meet the controller’s requirements. The soft robot is
not task-capable, as its sensing and maneuverability were not designed to
meet task needs.
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development with candidate solutions implemented in bespoke
software packages.[64,65]

In this Perspective, we classify task requirements into two
broad categories: material-based and information-based
requirements. Requirements corresponding to explicit demands
on the physical makeup of the agent, such as force or speed
generation[66] or operational geometric constraints,[67] are mate-
rial-based, while those based on their information-processing
capabilities, such as proprioceptive shape estimation[68] or ability
to compute model-predictive control,[69] are information-based.
These distinctions are not meant as rigid boundaries but rather
as useful guidelines for thinking about soft robot design prob-
lems. Importantly, control-first design approaches will likely
limit a soft robot’s ability to fulfill information-based task
requirements. Without co-design,[62] task-first design starts from
either material or information considerations and iterates toward
solutions that satisfy each set of requirements. To this end, mate-
rials and fabrication processes should inform the development of
suitable sensing and control, and computational processes
should ideally inform the development of more capable robot
morphologies (see Figure 1B and 2A). We explore the ways in
which control-first design and task-first design affect the task-
capabilities of resulting agents, highlighting the scale depen-
dence of both approaches in the following sections.

2.1. Control-First Robot Morphologies

Control-first design has a substantial impact on robot task-
capabilities because information-processing imposes stringent
constraints on soft robot bodies. For soft robots to satisfy the
assumptions of popular soft robotic control architectures, their
morphologies often need to adhere to strict guidelines that
may limit their usefulness (see Figure 1A and 2B). In large soft
robots at sizes ranging from 1 cm to 1m, current limitations in
soft robotic materials and manufacturing methods typically pre-
vent appropriate sensors and computing hardware to be integrated
into soft bodies to meet control needs. This is also the case for
most microscopic systems at length scales of 1 μm to 1 cm,
where traditional integrated circuitry experiences scaling
challenges.[44,70,71] Much less, building small-scale soft robots is
difficult enough without having a control strategy impose design
constraints on the robot’s body and morphology. For these and
many other reasons, satisfying the demands of particular control
schemes is not an optimal way to start designing a soft robot.
We provide examples of control-first robot design and explore its
diverse consequences across scales below. At large scales, we
choose to focus on soft devices based on continuum appendages,
as these constitute what we consider to be themost canonical exam-
ples of control-first design. At small scales, we highlight recent
examples from the microrobotics and active matter literature.

2.1.1. From 1 cm to 1 m: Soft Digits to Soft Walkers

Of the few control approaches derived with soft robots in mind,
those based on PCCmodels are widely used for soft robotic digits
and appendages. They are arguably the most emblematic of
control-first design and its shortcomings as well, making for a
particularly insightful class of systems to serve as a case study.

Originally developed for continuum arms mimicking octopus
tentacles and elephant trunks, PCC-based approaches model con-
tinuously deformable arms as collections of linked arcs of con-
stant curvature and with homogeneous material properties.[72–74]

These assumptions simplify an otherwise infinite-dimensional
control problem into an analytically tractable finite-dimensional
one by collapsing the hyperredundancy of continuum devices
into a few degrees of freedom.[75] Nonetheless, these simplifica-
tions come at the cost of constraining the capabilities of soft
robots to those admissible by the PCC formalism. The burden
of these constraints on the resulting agent can be quite high
when compared to an alternative task-first design—especially
in light of the increased access to computation at these length
scales (see Figure 3).

While PCC models have been successful in multiple applica-
tion domains, they provide the implicit template of control-first
soft robot design. According to this template, a practitioner
would explicitly design a soft robot body to be controllable by
a PCC-derived method and then attempt to solve a task. The func-
tionality of PCC-compatible soft robots depends on the serial
integration of multisegment deformable arms with actuation
embedded within segments, whose deformations must satisfy
the constant curvature hypothesis.[37,38] PCC-based control also
requires an understanding of the locations, velocities, and
accelerations of each segment’s ends. Though recent work has
used intertial measurement units (IMUs) to provide this
information,[76,77] most controllers depend on exogenous sensors
like motion capture to acquire it.[38,78] Thus, the PCC approach
immediately places fabrication, materials selection, and sensing
constraints on a robot that can be nontrivial to manufacture,
functionalize with sensors, and use in situations where contact
is required.[79–81] There are many examples of such soft robotic
arms capable of 2D and 3D motion designed in a task-agnostic
manner to satisfy PCC assumptions, as shown in Figure 3v
(see also refs. [78,82,83]), thereby sacrificing task-capability in
favor of a well-understood control strategy.[78,84]

Even when the assumptions of PCC-based methods are com-
patible with a given task, control architectures designed around
PCC are not necessarily optimal.[85,86] PCC-based control can be
adapted to account for a soft robot’s interactions with the envi-
ronment (e.g., being loaded when picking up or interacting with
an external object, or during walking as shown in Figure 3vii).[87]

But, the modified controllers are only valid for contrived condi-
tions and narrow regimes of deviation from free, unloaded
motion. For example, in the study of Onal and Rus,[88] the
authors designed a limbless soft robot for a bioinspired crawling
locomotion task using a PCC model. However, limbless animals
in nature (e.g., snakes and worms) often bend and buckle in ways
that are incompatible with the constant curvature hypothesis—
explicitly making use of these movements in ways that are known
to provide an advantage during locomotion.[89] If the task under
consideration is snake-like locomotion, there exists a broad liter-
ature analyzing and controlling such systems from which to draw
inspiration, without prespecifying the ways in which the robot is
allowed to move and interact with its environment.[90–92]

Similar control-first designs based on other control architec-
tures exist as well.[42,93] In particular, Cosserat rod theory is a
popular alternative to PCC control strategies.[94–97] Rather than
working with the PCC assumption, these methods typically make
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a piecewise constant strain assumption that can similarly
constrain the space of soft robot designs.[98] For example, in
the study of Boyer et al.,[94] the authors designed an eel-like swim-
ming robot for a Cosserat-based control architecture. However,
once again, the constant or piecewise-constant strain hypothesis
does not match the behavior of eels in nature, whose dynamic
control over internal strains is precisely what enables their deft
maneuverability.[99,100]

Overall, each of the examples we have highlighted above
illustrates how imposing controller-specific constraints on
the soft robot prior to the specification of a task collapses
the space of admissible soft robot designs, limiting the
task-capability of the final agent. Each example also shows a
general trend for macroscopic systems: as soft robot bodies
become increasingly complex, the theoretical tractability of
their control and design diminishes. This can make a
first-principles understanding of their dynamics and interac-
tions with the environment prohibitively challenging. This
observation alone highlights why control-first design in soft
robotics is both extremely difficult and restrictive of soft robots’
task-capabilities. As we discuss more below, macroscopic soft
robots should consider embracing modern computational tools
that are available at these scales, such as data-driven control,[101]

to become truly autonomous.

2.1.2. From 1 cm to 1 μm: Microrobots to Active Matter

Surprisingly, designing microscopic soft robots and active matter
with respect to their information requirements is not as limiting

as it is for their macroscopic counterparts. The task-capability of
soft robots tend to become increasingly limited and access to
computation becomes more restricted as we build soft robots
at smaller scales. Thus, as illustrated in Figure 3, the perfor-
mance gap between agents designed around computational ele-
ments and those designed around tasks is not as wide as it is for
larger soft robots. The increased tractability of theoretical control
methods with decreasing scale is another factor shrinking this
performance gap. For microscopic devices, analytical characteri-
zation of the relationship between environmental stimuli, mate-
rial properties, and their resulting behavior is often more feasible
than for larger soft robots.[102–106] Given such an analytical
understanding, the space of soft robot designs can be navigated
in terms of intuitive parametrizations based on system phenom-
enology, resulting in more capable designs, regardless of control
approach.

Of the many fields benefiting from increased theoretical trac-
tability at small scales, the field of microrobotics has recently
experienced several impactful advances.[44,107–109] In the study
of Reynolds et al.,[110] the authors reported the design of an
integrated circuit for on-board digital control, as well as a novel
process for integrating their devices with microactuators,
which were previously developed.[108] To illustrate their results,
the authors constructed the first electronically-integrated microro-
bots on the scale of paramecia capable of untethered
actuator-driven locomotion via on-board control (see Figure 3i).
By design, much of the microrobot’s form and function is directly
determined by its control considerations. First, fabrication meth-
ods and materials were selected to be compatible with traditional

Figure 3. Soft robotic systems of varying degrees of theoretical tractability and access to computation across scales. Odd numbered systems were
designed via a control-first approach, and even-numbered systems were according to a task-first approach. The systems are: i) Locomoting microrobot,
scale-bar 100 μm (Reproduced with permission.[110] Copyright 2022, AAAS); ii) Colloidal microrobotic generators,[142] scale-bar 250 μm (Photo provided
by T. A. Berrueta, Northwestern University); iii) Entirely soft octobot,[115] scale-bar 10mm (Photo provided by L. K. Sanders, Harvard University); iv)
Untethered metamaterial robot,[155] scale-bar 4 mm (Photo provided by X. Zheng, University of California, Berkeley); v) Proprioceptive PCC soft arm,[79]

scale-bar 5 cm (Photo provided by R. L. Truby, Northwestern University); vi) Soft ferromagnetic catheter, scale-bar 1 cm (Reproduced with permission.[122]

Copyright 2022, AAAS); vii) Meter-scale PCC walker,[187] scale-bar 15 cm (Photo provided by S. Li, Massachusetts Institute of Technology, Tsinghua
University); viii) Motorized, untethered, soft auxetic walker,[126] scale-bar 10 cm (Photo provided by R. L. Truby, Northwestern University).
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silicon-based control circuitry that has been modified to satisfy the
footprint and power needs of the microrobot. Then, taking into
account the energy limitations of the control circuitry, surface
electrochemical actuators (SEAs) were designed to bend through
a single-species adsorption mechanism when a voltage is
applied. Finally, the control circuitry was programmed to produce
low-frequency electrical oscillations to drive the actuators and pro-
duce a locomoting gait. As we can see, many elements of the
microrobot were designed by following the template of control-
first design. However, underlying this advance is a tightly inte-
grated theory that explains the relationship between SEA material
properties (e.g., thickness, free energy of adsorption, etc.), the con-
trol circuit’s capabilities (i.e., max output voltage), and the result-
ing behavior of the SEAs (i.e., radius of curvature), as captured by
the first equation of Miskin et al.’s paper.[108] Theoretical develop-
ments of this kind enable roboticists to navigate design spaces
with relative ease, suffering little drawbacks from taking a con-
trol-first approach (see Figure 3i). However, as we will see in
Section 2.2.2, there are still some downsides to this approach
in general.

When we consider microsystems on the scale of active matter
particles, the dividing line between what constitutes control and
material blurs beyond recognition, but the role of theory contin-
ues to be central toward realizing any nontrivial functionality.
Active matter systems are typically comprised of particles whose
dynamics are either self-phoretic or externally driven by fields
and forces, such as thermal gradients or electromagnetic fields,
leading to diverse self-organized behaviors that may be har-
nessed toward tasks.[111] While in some applications the external
forcing fields themselves act as a source of coarse-grained
control, in many settings this is not the case. In such field-free
systems, what one considers as control is often the material prop-
erties of the particles themselves and the ways in which these
shape their behaviors. For example, in the study of Brooks
et al.,[112] the authors provided a theoretical framework from
which to “program” the behavior of active colloidal particles
through the design of their 3D shape. In this case, each particle’s
morphology very literally is determined by the choice of control
strategy. However, because of the scale-dependent impact of
control-first design, as well as the theory’s elucidation of the
tight coupling between control, morphology, and resulting
behavior, the authors have been able to design and manipulate
the dynamics of experimental active matter systems with this
approach.[113,114]

As we step back and consider larger scales, control-first design
begins to produce diminishing returns once again. At meso-
scopic scales, soft robot design can be very challenging because
systems may be simultaneously too large and complex for ana-
lytical characterization, and too small and power-constrained to
have access to sophisticated computation. For these reasons,
designing mesoscopic soft agents around their information-
processing constraints can negatively impact their task-capability.
For example, in the study of Wehner et al.,[115] the authors devel-
oped an entirely soft untethered octopus-like robot capable of
cyclically actuating its tentacles (see Figure 3iii). By using a soft
microfluidic control architecture without a task that demands it,
the downstream capabilities of the agent suffer as a result. The
microfluidic oscillator responsible for controlling the actuation of
the agent’s tentacles is limited by the fuel’s flow rate, and this

limits the amount of energy that can be transduced into mechan-
ical actuation. Though the soft robot produced 0.04 N of force per
actuator, this was insufficient for locomotion or performing
other tasks. Despite exploring 30 different robot designs, the lack
of theoretical tractability or automated design tools prevented the
authors from finding designs with greater performance for a
practical task.

As we have illustrated throughout the last sections, control-
first design can have severe consequences on the capabilities
of soft robots. Moreover, we have shown that this impact is
strongly scale-dependent and mediated by the interplay of two
primary forces influencing the design process: the tractability
of theoretical analysis and ease of access to computation.
Since theoretical tractability and access to computation are them-
selves highly scale-dependent properties (see Figure 3), their
interplay characterizes the degree of design difficulty—having
the most severe impact at mesoscopic scales where neither the-
ory nor computation is widely available.

2.2. Task-First Robot Morphologies

A task-first approach encourages solutions to soft robot design
that integrate morphological and computational design elements
by prioritizing the development of task-capabilities by any means
necessary (see Figure 2A). By starting with actuator selection, a
soft robot’s task-capability can be more easily ensured up front.
For example, if a task requires displacing an object a given dis-
tance, then an actuator can be selected early on that generates the
necessary forces to do so.[116] Subsequently, sensing and control
elements should be integrated without sacrificing task-capability.
As we consider smaller and smaller scales, the availability of
actuation mechanisms diminishes, and their compatible envi-
ronmental chemistries narrow.[107,117–121] Moreover, choosing
an actuator can have a large impact on downstream design deci-
sions by determining compatible energy sources and fabrication
strategies.[15,60] These will further dictate the material compo-
nents that can be added to the soft robot for distributed percep-
tion and integrated control. To this end, we believe task-first soft
robot design most naturally prioritizes the selection of materials,
actuators, and fabrication strategies needed to achieve material-
based task requirements and body morphology at appropriate
length scales. This then enables information-based requirements
to be subsequently met, as illustrated in Figure 2. We highlight
several soft robots below as examples of systems that follow a
task-first design process. Each possesses a body with tightly inte-
grated sensing and control capabilities.

2.2.1. From 1 cm to 1 m: Soft Digits to Soft Walkers

Throughout much of Section 2.1.1, we highlighted examples of
soft robots whose morphologies were forced to meet the
constraints of control architectures like those based on PCC
or Cosserat rod models. Rather than taking a control-first
approach, we can allow the task requirements themselves to
define the role of perception and control in a robot’s design.
As we show through the examples below, a task-first design
approach opens opportunities to push both material and
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information-processing advances without introducing ad-hoc
restrictions that only limit an agent’s task-capability.

The most fundamental opportunity that task-first design
opens up is allowing roboticists to freely explore material prop-
erties and robot morphologies prior to committing themselves to
a controller and its demands. For example, in the study of Kim
et al.,[122] the authors design a soft ferromagnetic microcatheter
to assist with minimally invasive endovascular surgeries (see
Figure 3vi). Providing robotic assistance during neurosurgery
is no trivial task: it demands dexterous maneuverability in geo-
metrically constrained and safety-critical environments where
the ability to make sharp turns is essential to navigation perfor-
mance. The researchers used theoretical models and genetic
algorithms to maximize their design’s maneuverability—a task
requirement—by altering its material properties.[123] While the
material requirements of a surgical robotic microcatheter are
stringent, its information requirements are more relaxed
because in stationary systems of this scale, perception, and con-
trol can often be entirely off-boarded onto external hardware. By
designing their control systems in service of the material require-
ments of the task, the researchers were able to accelerate real-
world neurosurgical procedures by over 30% on average.[67]

With the introduction of sophisticated machine learning-based
and image-guided planning and control, these technologies have
the potential for completely autonomous surgical operation,
where soft robotic catheters safely and gently move within the
body in a way that is currently intractable with model-based
control.[124]

Untethered operation remains a central challenge in soft
robotics. Whether a soft robot can operate without tethers
depends sensitively on its on-board energy storage capacity,
the force output of its actuators, and the energy efficiency of
its actuators and control elements. While new forms of energy
storage require fundamental progress in battery systems,[125]

task-first design can facilitate the development of energy-efficient
soft robots. In the study of Kaarthik et al., [126] the authors intro-
duce a soft robotic quadruped for an untethered locomotion task
(see Figure 3viii). Untethered locomotion requires actuators that
are simultaneously strong enough to bear loads and efficient
enough to handle extended operations. To this end, the authors
architected their robot’s soft legs out of assemblies of handed
shearing auxetics (HSAs), which are capable of high-force
output.[127,128] Taking advantage of their robot’s load-bearing
capacity (up to 1.5 kg), the authors motorized their HSA legs
using off-the-shelf servomotors and coordinated their gaits using
a battery-powered microcontroller.[126] Conventional servomo-
tors are remarkably robust and energy efficient despite their
rigidity, which facilitates untethered operation of the authors’
soft robot for over 65min. Rather than opting for an entirely-soft
control solution, the authors took advantage of the freedom
afforded to them by their task’s requirements and integrated tra-
ditional motor control elements into their soft robot design. The
use of on-board computation offers great opportunities for soft
robot autonomy when the task permits it. Modern control
paradigms like active learning[129–134] can be deployed on micro-
controller hardware to provide morphology-aware adaptation to a
robot’s sensing and control strategies. We believe that such inte-
gration of physical and computational intelligence aboard soft

robotic hardware is essential to realizing truly bioinspired
autonomy.

Despite the importance of material and actuator selection in
task-first design, information-processing elements can still play a
pivotal role. In fact, certain classes of soft robotic systems may
require sophisticated control to achieve any task-capability at
all. However, such control architectures must be able to adapt
to and be informed by the agent’s morphology to avoid design
restrictions. In macroscopic systems, adaptation of this kind
largely comes through the integration of machine learning.[22]

Large soft robots are capable of housing nontrivial computational
elements that enable system identification,[135,136] sensor charac-
terization,[130,137] and adaptive control[96,129] (see Figure 3). For
example, in the study of Bruder et al.,[69] the authors made
use of data-driven Koopman operators to identify the dynamics
of a continuum manipulator and provide morphology-
independent adaptive control.[138,139] Additionally, Han et al.[140]

used recurrent neural networks to extract pressure information
from soft microfluidic sensor arrays that are otherwise hard to
interpret due to their nonlinearity and hysteresis. Despite much
interest in machine learning methods, the field is yet to widely
implement them in the task-first fashion that we suggest.

2.2.2. From 1 cm to 1 μm: Microrobots to Active Matter

We highlighted above the role that analytical characterization of
small-scale soft robots can have on their design. Theoretical mod-
els can greatly reduce the drawbacks of control-first design at
microscopic scales by facilitating the exploration of design spaces
through intuitive phenomenological parameters. Still, there is
room for improvement in small-scale soft robot performance
through task-first design.

As a first example, we consider the task of cyclically actuating
microrobotic arms—a precursor to the more complex task of pro-
ducing locomoting gaits. This task’s primary requirement is the
production of low-frequency electrical oscillations needed to
drive arm movements, which are surprisingly challenging to
engineer in microrobotic systems.[141] In fact, the production
of low-frequency electrical oscillations is the central control func-
tion that the circuitry of the microrobot in the study of Reynolds
et al.[110] achieves, as discussed in Section 2.1.2. However, to pro-
duce these oscillations they required sophisticated microfabrica-
tion strategies and circuits comprised of over one thousand
transistors. In contrast, Yang and Berrueta et al.[142] achieve this
same feat without the need for complex integrated electronics or
elaborate mechanical assemblies by exploiting the self-organized
dynamics of a simple collective of colloidal microparticles (see
Figure 3ii). Here, the authors satisfy the task’s requirements
by first modifying their system’s material properties to reliably
generate mechanical oscillations. Then, through the use of an
electrochemical fuel cell they can transduce the system’s
mechanical oscillations into oscillating currents that power the
same SEA-based microrobot arms as in the study of Reynolds
et al.[110] To determine the necessary parameters to achieve
self-organized low-frequency oscillations, the authors derived
an analytical model of their system based on the statistical
mechanics of active collectives.[143–145] In this way, the authors
explore the design space and devise a task-first control solution
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that is entirely emergent from the morphological properties of
the system.[146] Hence, while the theoretical tractability of micro-
systems can reduce the impact of control-first design, a task-first
approach can still lead to simpler solutions.

At scales smaller than those of microrobots, system
capabilities tend to be so limited that task-first design does
not necessarily produce improved outcomes. However, as
progress in dynamical self-assembly[147,148] and dissipative adap-
tation[145,149,150] continues to evolve, active particle systems may
be able to exhibit emergent task-capabilities collectively. Thus,
while we do not expect noticeable differences at the level of
individual particles and simple systems, sufficiently complex
supramolecular assemblies may eventually benefit from task-first
design. These assemblies often exhibit exotic emergent behaviors
with potential for task-capability, as in the self-organized move-
ment of so-called living crystals.[151] For example, Martinet
et al.[152] designed active colloidal metamachines capable of
exploiting their self-organized dynamics toward work produc-
tion. Leveraging theory and experiments from previous stud-
ies,[153,154] the authors assembled collections of particles into
gears and cogwheels with controllable direction and angular
momentum. By focusing on a cargo transport task, the authors
design a colloidal metamachine based on these cogwheels that
can pick up, direct, and release a passive chemical load. As active
matter systems and their properties become increasingly
complex, we posit that task-first approaches may play a role in
achieving more sophisticated behaviors, such as those illustrated
in our examples.

Rational principles that can guide designs toward satisfying
material requirements are crucial to overcoming the challenges
associated with the mesoscale. Intuitive theoretical models, effi-
cient numerical simulations, and versatile fabrication strategies
all provide effective ways to navigate system design parameters in
a task-first manner. Cui et al.[155] made use of all three
approaches to design a metamaterial-based milli-robot capable
of sophisticated sensing and control (see Figure 3iv). Unlike
conventional materials, metamaterials are architected from com-
plex building blocks that are often each capable of deforming,
rotating, buckling, and more.[156] These can be designed to
exhibit programmable properties[157] or even robotic functionali-
ties through the integration of actuation elements.[158] Along
these lines, Cui et al.[155] introduced a class of sensorized,
piezoelectric robotic metamaterials capable of controllable multi-
degree of freedom actuation. They develop a theoretical frame-
work that generalizes piezoelectric strain tensors to architected
metamaterials, as well as provide finite element modeling tech-
niques and new multimaterial additive fabrication strategies to
facilitate the design of task-capable soft systems based on their
material platform. In validating their approach, they developed
an untethered mesoscale soft robot that is capable of autono-
mously steering and obstacle avoidance. In accordance with
task-first design, they used their theory to determine the strain
modes needed to enable directed planar movements using archi-
tected piezoelectrics. Then, they designed and fabricated a
self-sensing piezoelectric lattice capable of generating those
modes of actuation through its metamaterial properties.
Finally, by exploiting the system’s strain tensor-based sensing
and actuation, they implemented a simple algorithm aboard a
microcontroller that enables sophisticated autonomous

functionalities. This work exemplifies the potential that can be
realized when tasks drive the design process toward systems that
tightly integrate morphological and computational components.

Task-first design, as illustrated by our examples, provides
opportunities for roboticists to exploit the integration of physical
and computational intelligence. Taking advantage of computa-
tion and theory when they are respectively available (see
Figure 3) can lead to the design of soft robots capable of overcom-
ing subsystem limitations through the emergence of synergies
between body dynamics and control architectures. For this rea-
son, it is crucial to continue developing computational tools and
facile fabrication techniques that can facilitate the exploration of
design spaces in the absence of theory, as we discuss in the fol-
lowing section.

3. Navigating the Design Spaces of Soft Robotics

Ideally, soft robot design would be the result of an automated
process where a task is specified, its material and information
requirements are distilled, and a candidate design is produced.
Some version of this vision is already emerging for traditional
robots. For example, model-predictive control and graph heuris-
tic optimization methods have successfully co-designed robot
control architectures and body morphologies.[159] Robot rigidity
allows controller and body design to be decoupled and optimized.
But for soft robots, the tight coupling of actuation, sensing,
morphology, and control hampers any straightforward applica-
tion of similar techniques. Overcoming this hurdle will require
progress across a broad range of distinct research areas, from
optimization-based co-design to multimaterial 3D printing. In
the following subsections, we highlight computational and mate-
rial research domains that are positioned to play an important
role in facilitating the task-first design of soft autonomous agents
across scales.

3.1. Design Automation Tools

Throughout Section 2, we highlighted the ways in which theoret-
ical models can facilitate the design of autonomous soft robots.
By easing the navigation of soft robot design spaces, new theories
allow roboticists to discover better-performing designs through
the modulation of physically relevant system parameters.
However, as Figure 3 highlights, the theoretical tractability of soft
robots is strongly scale-dependent. Without guidance from the-
ory, how exactly can one determine the best way to integrate
material components to achieve a specific task? This is precisely
where automated design tools and methodologies stand to have
an impact.[160] Soft roboticists typically build soft robots by hand
through a prototype-driven, trial-and-error process that is both
time-consuming and inefficient.[26] However, the space of soft
robot designs is prohibitively large. It spans combinatorially
many agent morphologies, each potentially involving different
materials with distinct functional properties and particular
information-processing affordances depending on the fabrica-
tion method(s) used. Exhaustive design is intractable at most
scales. Hence, tools to intelligently and efficiently navigate this
space and facilitate rational design are crucial to the future of soft
robotics (see Figure 4).[161]
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3.1.1. Optimization-Based Co-Design

Autonomous design of soft robots requires methods capable of
exploring and optimizing robot morphologies, sensing, and con-
trol strategies simultaneously. In this sense, co-design methods
will be central to the future of soft robot design. Formal co-design
problems are typically framed as optimizations subject to inter-
dependent constraints. As a simple example, consider optimiz-
ing the performance of an actuator that is tasked with bearing a
given load, and whose power demands require a battery of a
given output. Since the battery weighs down the actuator and
its size determines the power output, the system’s load-bearing
and power constraints are coupled. Co-design techniques
have been developed to handle problems such as these, which
are ubiquitous in soft robotics, yet standard optimization
methods are not suited to solve. While much work toward a
mathematical theory of co-design has emerged over the past
decade,[61–63,162,163] its application in robotics has met some chal-
lenges. Namely, its been proven that there exist no computation-
ally efficient algorithms to optimize robot designs subject to task
considerations,[164,165] which limits the applicability of any naive
implementation of these methods. That being said, recent work
has focused on developing techniques to circumvent the practical
limitations of co-design, as we discuss in this section.

In the absence of formal co-design solutions, assistive tools
and heuristic approaches should nonetheless be developed to
help partially close the loop or at least provide feedback on
the design process. Importantly, we note that some solutions will
be better suited for the challenges of certain scales than others, as
shown in Figure 4 and discussed in Section 2.1.2. At the smallest
scales, fabrication processes can often be parallelized to achieve
massive throughput efficiently, which can lessen the drawbacks

of trial-and-error design approaches.[108,166] In such settings,
exhaustive design can be used effectively to explore candidate
robot designs (see Figure 4i). In contrast, rational design tools
may be necessary in larger devices to capture the complex multi-
scale physics at play through model-based design optimizations
(see Figure 4iii). More broadly, as we consider the many scale-
dependent factors that affect task-first soft robot design—diver-
sity of available materials, abundance of fabrication methods,
theoretical tractability, simulation fidelity, and access to compu-
tation—we find that mesoscopic length-scales pose the greatest
challenges (see Figure 4). At these scales, systems can exhibit
phenomena that are simultaneously too complex for mechanistic
first-principles study, and too detail-dependent for coarse-
grained or continuum models to reproduce, which makes both
theoretical and computational characterization challenging.[167]

3.1.2. Machine Learning-Assisted Co-Design

Despite its formal properties, researchers have managed to cir-
cumvent the practical limitations of co-design by taking advan-
tage of approximate solutions, simplifying assumptions, and
heuristics. One area that has been particularly fruitful is the
use of machine learning for approximating otherwise intractable
co-design and combinatorial optimization problems.[168] For
example, researchers have been able to automate the design of
silicon chip floorplans through the use of reinforcement learn-
ing, where the algorithm can search for approximately optimal
designs with the help of neural representations of the chip’s ele-
ments and functionalities.[169] Reinforcement learning as an
approach is broadly amenable to task-first design because it is
explicitly concerned with how agents can learn to solve tasks

Figure 4. Available design approaches and difficulty of designing for task requirements across scales. At microscopic scales, access to massively
parallelized fabrication strategies can make exhaustive trial-and-error design approaches fruitful. At larger scales, the fidelity of model-based design
optimizations can enable rational design approaches. Mesoscopic scales face the greatest challenges because neither exhaustive nor rational approaches
provide an obvious solution to design challenges. The example systems shown are: i) Lithography-enabled microrobots, scale-bar 100 μm (Reproduced
with permission.[108] Copyright 2020, Springer Nature); ii) Xenobot designed by evolutionary algorithm, scale-bar 500 μm (Reproduced with
permission.[194] Copyright 2020, National Academy of Sciences); iii) Aquatic soft robots co-designed via differentiable simulation (Reproduced with
permission.[187] Copyright 2021, Association for Computing Machinery).
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through modifications to their behavior or system parameters.[170]

However, its stringent data requirements can pose issues in set-
tings where high-fidelity system simulations are not available, as
is the case inmany robotics applications.[171] Beyond reinforcement
learning, soft roboticists have made use of other machine learning
techniques to solve design problems, using neural representations
of task requirements to find approximate solutions to body and
control co-design problems.[64,172–174] Spielberg et al.[172] used
machine learning to find approximate solutions to several sensor
placement and control co-design tasks with simulated soft robots.
Their algorithm optimizes soft robot morphologies with respect to
a given task by learning sensor locations and control policies that
are useful toward completing the task. By similarly taking advan-
tage of machine learning-based co-design, we posit that researchers
will make substantial progress toward task-first co-design of soft
robots.

3.1.3. Evolutionary Co-Design

Another field with a long history of contributing to applied
co-design methodology is embodied intelligence and artificial
life.[175–177] Rather than use neuroscience-inspired methods like
neural networks, the artificial life community has favoredmachine
learning techniques inspired by biological evolution and heredity,
making use of evolutionary algorithms as well as differentiable
simulations to tackle co-design problems. Much like our own pro-
posal, the artificial life community seeks to design autonomous
agents whose material and cognitive make-up are well-adapted
to their environmental niche.[178–180] However, our task-first
design proposal differs in aim and scope from merely realizing
embodied intelligence.Whereas artificial life researchers are inter-
ested in a design’s evolution and environmental adaptation as an
object of study in itself,[181–183] here we see it as a means to an end
—that is, the completion of a given task. Nonetheless, themethods
developed by the embodied intelligence and artificial life commu-
nities are well-suited to task-first soft robot design, presenting
opportunities for researchers at the interface of these fields.

One such method is differentiable simulation, which makes
use of simplifying assumptions to enable computationally effi-
cient optimization-based co-design. Differentiable simulations
model parametric dependencies between the behavior of mate-
rial substrates and their physical properties as differentiable
functions, which substantially simplifies the underlying optimi-
zation problem.[57] As a result, complex co-design problems can
be efficiently tackled purely through gradient descent on the sim-
ulation’s parameters. However, because many physical phenom-
ena and design elements introduce nonsmoothness, the fidelity
of solutions generated by differentiable simulations can vary.
Nonetheless, many such approaches have been successful,
designing robot morphologies, sensors, controllers, and actua-
tors jointly.[184–186] For example, Ma et al.,[187] used differentiable
functions to encode and simulate a robot’s shape, which they
jointly optimized along with a neural network controller via gra-
dient descent to enable efficient co-design of underwater soft
robots (see Figure 4iii).

When nonsmooth elements are of crucial importance to soft
robot design, evolutionary algorithms offer a gradient-free
alternative.[55,58,188,189] These do not depend on design parameter

gradients, relying instead on fitness heuristics to guide an evo-
lutionary search process (see Figure 4ii). Evolutionary algorithms
work by evaluating the fitness of an initial pool of candidate
designs, the most fit of which are used as a starting point for
subsequent generations of candidate designs. Although these
methods are computationally expensive, they have been shown
to work in many complex co-design problems, resulting in soft
agents that can operate in real-world environments across
scales.[190–193] In recent work, Kriegman et al.[194] made use of
evolutionary algorithms to design soft robot morphologies in
simulation for a locomotion task. These simulated soft robots
were then realized in vivo by assembling frog stem cells into con-
figurations that match their in silico designs—thereby creating
synthetic, task-capable, living organisms co-designed by an evo-
lutionary algorithm.While much progress remains to be made in
soft robot design automation, practical co-design techniques like
the ones highlighted will play an important role.

3.2. Materials and Fabrication Methods

In the previous section, we discussed the ways that automated
design tools can facilitate task-first design, playing a similar role
to that of theoretical models in easing navigation of soft robot
design spaces. If novel theories and automated design technolo-
gies ease the process of navigating a design space, then fabrica-
tion and material innovations extend its boundaries (i.e., they
expand the set of possible bodies illustrated in Figure 1), giving
practitioners more flexibility in how they choose to maneuver in
this space. Of the countless ways in which progress in materials
and fabrication technologies can impact soft robot design, here,
we highlight a few areas with particular near-term potential. We
choose to focus on areas positioned to improve integration of
information-processing within soft robots.

3.2.1. Additive and Digital Manufacturing

While sophisticated software can propose myriad intricate
designs, soft roboticists are fundamentally constrained by what
they can actually manufacture. Hence, materials and fabrication
innovations straightforwardly enrich a soft roboticist’s design
palette. Of these tools, 3D printing’s ease of rapid prototyping
is well-suited to task-first design.[13,14,195] Additionally, simulta-
neous fabrication of robot bodies, control elements, and embed-
ded sensors is increasingly possible thanks to advances in
multimaterial 3D printing.[196–202] Heterogeneous integration of
soft materials with programmablemechanical, electrical, or optical
properties is a key step toward improving information-processing
in soft robots. As a result, advances in areas such as multimaterial
direct ink writing,[203] embedded 3D printing,[204] and digital pro-
jection lithography[205] will be instrumental. Improvements to
printable materials, printhead design, accessible length scales of
fabrication, programmability of material properties, and more will
facilitate task-first soft robot design.[196–202]

3.2.2. Soft Sensorization

Advances in soft robot sensorization will also be key to overcom-
ing the information-processing bottlenecks holding back soft
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robot autonomy. However, the integration and distribution of
sensors in soft robots remains underexplored due to challenges
in fabrication, signal interpretability, as well as morphology-
dependent sensor performance.[79,140,206–209] Progress in this
area also depends on advances in multimaterial fabrication meth-
ods like those discussed in the previous section.[51,55,195,197,210]

For example, Truby et al.[211] used embedded 3D printing to
make somatosensitive actuators with distributed tactile proprio-
ception out of elastomer-ionogel composites. Multimaterial
printing and patterning with ionic inks such as these is a prom-
ising avenue for soft sensorization because it allows sensors to
interface with devices such as microcontrollers that can enable
sophisticated state estimation and feedback control.[212]

Electronically integrated sensing is important because soft
sensor signals can be highly complex and hard to interpret.
As discussed in Section 2.2.1, machine learning techniques such
as recurrent neural networks can be used to learn input-
output maps to make complex sensor array signals more
interpretable.[140] However, this is as of yet only possible
aboard a robot when sensory information can be extracted
and analyzed electronically. In addition to black box machine
learning techniques, progress in computational and theoretical
multiphysics modeling would help improve soft sensor
characterization.[213–215] Thus, we see soft sensing as a crucial
component of task-first soft autonomy, and believe that there
are diverse opportunities in fabrication, electronic integration,
and modeling to advance the field in the near-term.

3.2.3. Electronically-Addressable Actuation

Despite recent progress in electronics-free soft robot
designs,[115,216–219] the capabilities of nonelectronic, soft robotic
controllers will remain outpaced by those of electronic comput-
ing architectures. Hence, by working instead with electronically-
addressable components, the computational advantages and
advanced techniques developed for traditional electronics can
be readily exploited within soft robots. Thus, electrically driven
soft actuators are needed to integrate with electronic
information-processing elements within soft robots without
sacrificing task-capability.[21,79,220] There are three primary
modes of electrical actuation: thermomechanical, electrostatic,
and electrochemical.[221] In each of these modes, the role of
the electric current or voltage as input is to elicit a mechanical
response from the material. Already, electrically controllable
actuators are being designed for soft robots[221] and related sys-
tems such as shape-morphing robotic surfaces.[222–224] For exam-
ple, in thermomechanical actuators like liquid crystal elastomers
(LCEs),[225–227] passing currents produce shape changes in con-
ductive materials via Joule heating. Joule-heated LCEs have been
integrated into load-bearing, shape-morphing surfaces[222] and
with multifunctional liquid metal heaters for closed-loop actu-
ation of artificial muscle fibers.[226] Extending the available suite
of efficient, electronic actuation mechanisms, the materials these
are compatible with, and the sophistication of their resulting
behaviors is an important research thrust in support of soft robot
autonomy. Through the lens of task-first design, we see the effect
of both electronically-addressable sensing and actuation innova-
tions as increasing the overlap between the space of possible

bodies and the space of available control strategies (see
Figure 1). Thus, we believe that these areas will be of particular
importance toward seamlessly incorporating physical and
computational intelligence in soft material substrates.

4. Outlook

The introduction of soft matter as a set of building materials for
robot bodies has irreversibly changed the field of robotics by
bringing physical intelligence to machines. However, even as
the field of soft robotics has grown, autonomy in soft robots
is still out of reach. The methods the field has introduced for
building physically intelligent robots remain limited in their abil-
ity to distribute and integrate information-processing elements
like sensors and controllers within these new robots. As a result,
the field now faces information-processing bottlenecks that fun-
damentally limit the usefulness of the robots it produces. Thus,
the challenge of coupling perception, learning, and control with
physically intelligent systems remains as much a robotics chal-
lenge as a materials one.

Here, we have encouraged the field to achieve soft robot auton-
omy by first focusing on task-capability before considering
controller designs. We have argued that the field’s current
control-first focus severely limits the potential of resulting soft
robots. Much of the problem is rooted in the fact that, unlike
traditional systems, there exists no systems science for soft mat-
ter systems—there are neither tests for well-posedness, nor auto-
mated synthesis, nor universal guidelines for design. Due to the
complexity of soft matter engineering, this should not come as a
surprise. As we have highlighted in the previous section, prog-
ress in several areas is needed before off-the-shelf rational design
of soft robots and robotic materials becomes practical. A soft mat-
ter systems science will not look like the control-first systems sci-
ence of the past century. A task-first systems science will provide
analysis and synthesis tools for soft robots as a function of task
specifications—with the seamless integration of physical and
computational intelligence as a primary goal—providing a path
forward for engineering the complex systems of the future.[228]

In this Perspective, we identify guiding principles that can
help engineers materialize autonomy in soft robots across all
scales. We reference examples of recent works to support our
positions and suggest that a task-first approach to soft robot
design may yield yet undiscovered affordances and capabilities
in soft robots. These affordances will play an important role
as automated soft robot design tools continue to mature.
These design tools will then facilitate navigating the expansive
space of soft robot designs, and form the basis for the kind of
truly bioinspired autonomy that motivated the development of
soft material systems in the first place.
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[159] A. Zhao, J. Xu, M. Konaković Luković, J. Hughes, A. Speilberg,
D. Rus, W. Matusik, ACM Trans. Graphics 2020, 39, 188.

[160] S. Kriegman, A. M. Nasab, D. Shah, H. Steele, G. Branin, M. Levin,
J. Bongard, R. Kramer-Bottiglio, in 2020 IEEE Int. Conf. Soft Robotics
(RoboSoft), IEEE, Piscataway, NJ 2020, pp. 359–366.

[161] F. Chen, M. Y. Wang, IEEE Rob. Autom. Mag. 2020, 27, 27.
[162] A. Censi, arXiv preprint arXiv:1512.08055, 2015.
[163] A. Censi, in 2016 IEEE American Control Conf. (ACC), IEEE,

Piscataway, NJ 2016, pp. 1227–1234.
[164] F. Z. Saberifar, J. M. O’Kane, D. A. Shell, in Algorithmic Foundations

of Robotics XIII, Mérida, Mexico 2020, pp. 868–883.
[165] D. A. Shell, J. M. O’Kane, F. Z. Saberifar, IEEE Trans. Autom. Sci. Eng.

2021, 18, 876.
[166] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson,

G. M. Whitesides, Chem. Rev. 2005, 105, 1171.
[167] T. Kozhukhov, T. N. Shendruk, Sci. Adv. 2022, 8, eabo5788.
[168] Y. Bengio, A. Lodi, A. Prouvost, Eur. J. Oper. Res. 2021, 290, 405.
[169] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori,

S. Wang, Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, J. Pak, Nature
2021, 594, 207.

[170] N. Mazyavkina, S. Sviridov, S. Ivanov, E. Burnaev, Comput. Oper.
Res. 2021, 134, 105400.

[171] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, S. Levine, Int. J.
Rob. Res. 2021, 40, 698.

[172] A. Spielberg, A. Amini, L. Chin, W. Matusik, D. Rus, IEEE Rob.
Autom. Lett. 2021, 6, 1208.

[173] A. Zolfagharian, L. Durran, S. Gharaie, B. Rolfe, A. Kaynak,
M. Bodaghi, Sens. Actuators, A 2021, 328, 112774.

[174] S. Yin, Z. Jia, X. Li, J. Zhu, Y. Xu, T. Li, Extreme Mech. Lett. 2022, 52,
101635.

[175] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu,
P. J. Bentley, S. Bernard, G. Beslon, D. M. Bryson, N. Cheney,
P. Chrabaszcz, A. Cully, S. Doncieux, F. C. Dyer, K. O. Ellefsen,
R. Feldt, S. Fischer, S. Forrest, A. Fŕenoy, C. Gagńe, L. Le Goff,
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